

Test Report issued under the responsibility of:

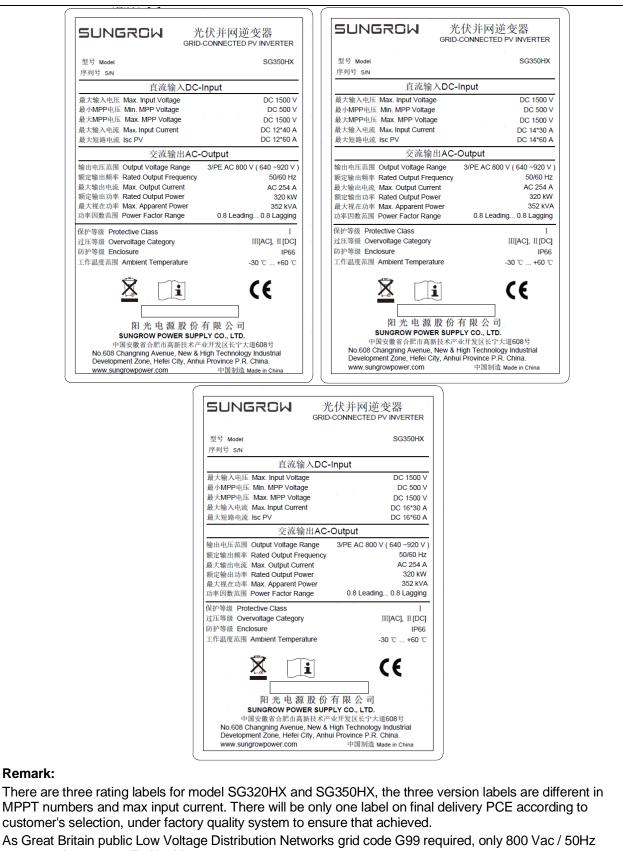
TEST REPORT

Engineering Recommendation G99/1-8 Requirements for the connection of generation equipment in parallel with public distribution networks on or after 27 April 2019

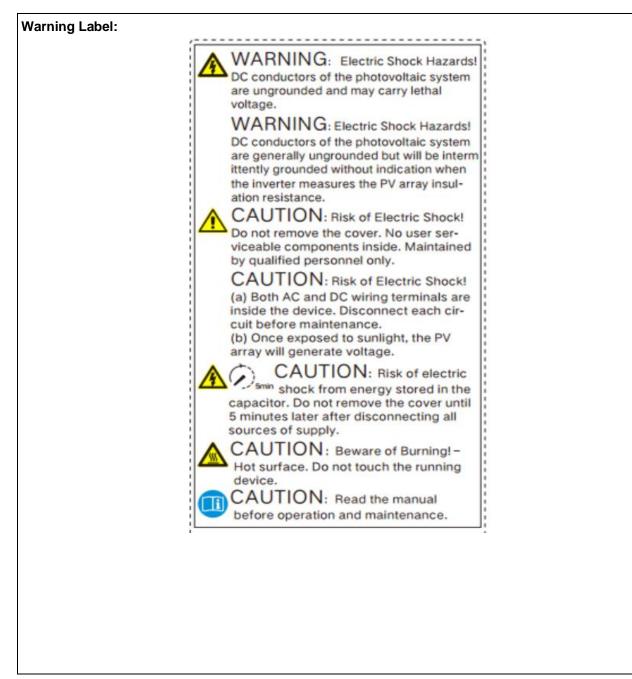
-	-
Report	
Report Number:	6134228.51V1.1
Date of issue:	2023-03-16
Total number of pages:	247 pages
Testing Laboratory	DEKRA Testing and Certification (Suzhou) Co., Ltd.
Address :	No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China
Applicant's name:	Sungrow Power Supply Co., Ltd.
Address	No.1699 Xiyou Rd., New & High Technology Industrial Development Zone, 230088, Hefei, P. R. China
Test specification:	
Standard:	Engineering Recommendation G99 Issue 1 – Amendment 8: 2021
	(G99/1-8:2021)
Test procedure:	Type test
Non-standard test method:	N/A
Test Report Form No	G99/1-8_V1.0
Test Report Form(s) Originator:	DEKRA Testing and Certification (Suzhou) Co., Ltd.
Master TRF:	Dated 2022-05
Test item description	Grid-connected PV inverter
Trade Mark:	SUNGROW
Manufacturer:	Sungrow Power Supply Co., Ltd.
	No.1699 Xiyou Rd., New & High Technology Industrial Development Zone, 230088, Hefei, P. R. China
Model/Type reference:	SG285HX, SG320HX, SG350HX

.

Ratings :	SG285HX: PV input: Max. 1500 Vdc, MPPT voltage range: 500-1500 Vdc, max 12*40 A, Isc PV: 12*60 A AC Output: 3/PE, 800Vac, 50/60 Hz, rated 285 kW, max 285 kVA, max 206 A
	SG320HX: PV input: Max. 1500 Vdc, MPPT voltage range: 500-1500 Vdc, max 12*40 A or 14*30 A or 16*30 A, Isc PV: 12*60 A or 14*60 A or 16*60 A AC Output: 3/PE, 800Vac, 50/60 Hz, rated 295 kW, max 352 kVA, max 254 A
	SG350HX: PV input: Max. 1500 Vdc, MPPT voltage range: 500-1500 Vdc, max 12*40 A or 14*30 A or 16*30 A, Isc PV: 12*60 A or 14*60 A or 16*60 A AC Output: 3/PE, 800Vac, 50/60 Hz, rated 320 kW, max 352 kVA, max 254 A


Responsible Testing Laboratory (as applicable), testing procedure and testing location(s):						
\square	Testing Laboratory:	DEKRA Testing and Certification (Suzhou) Co., Ltd.				
Testing location/ address:		No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China				
Test	ed by (name, function, signature) :	Sandy Qian (ENG)	Sandy Q:am			
Арр	roved by (name, function, signature):	Jason Guo (REW)	Jaenkon			
₽	Testing procedure: CTF Stage 1:					
Test	ing location/ address:					
Test	ed by (name, function, signature) :					
App	roved by (name, function, signature)					
	Testing procedure: CTF Stage 2:					
	ing location/ address:					
1031						
Test	ed by (name + signature):					
Witn	essed by (name, function, signature). :					
App	roved by (name, function, signature):					
₽	Testing procedure: CTF Stage 3:					
₽	Testing procedure: CTF Stage 4:					
Test	ing location/ address:					
Test	ed by (name, function, signature) :					
Witn	essed by (name, function, signature). :					
App	roved by (name, function, signature)					
Sup	Supervised by (name, function, signature) :					

Г


List of Attachments (including a total number of pages in each attachment): Appendix 1: Compliance Verification Report – Tests for Type B, C and D Inverter Connected Power Generating Modules (97 pages) Appendix 2: Photo documentation (4 pages)			
Summary of testing:			
Tests performed (name of test and test clause):	Testing location:		
All tests (except clause 4.8 EMC tests)	DEKRA Testing and Certification (Suzhou) Co., Ltd.		
	No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China		
EMC and power quality – EMC test (The EMC test report 64.772.21.80078.02 provided by the customer)	TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch 5/F & East of 8/F., Communication Building, No.163, Pingyun Road, West of Huangpu Avenue, Guangzhou, China		

	网逆变器 CTED PV INVERTER	SUNGROW	GRID-CONNECTED PV INVERTER
型号 Model	SG285HX	Model	SG320HX
序列号 S/N		S/N	
直流输入DC-Input		D	C-Input
最大输入电压 Max. Input Voltage	DC 1500 V	Max. Input Voltage	DC 1500 V
最小MPP电压 Min. MPP Voltage	DC 500 V	Min. MPP Voltage	DC 500 V
最大MPP电压 Max. MPP Voltage	DC 1500 V	Max. MPP Voltage	DC 1500 V
最大输入电流 Max. Input Current	DC 12*40 A	Max. Input Current Isc PV	DC 12*40 A DC 12*60 A
最大短路电流 Isc PV	DC 12*60 A		
交流输出AC-Outpu	t	Output Voltage Range	
输出电压范围 Output Voltage Range 3/PE /	AC 800 V (640 ~920 V)	Rated Output Frequency	3/PE AC 800 V (640 ~920 V 50/60 Hz
额定输出频率 Rated Output Frequency	50/60 Hz		AC 254 A
最大输出电流 Max. Output Current	AC 206 A	Max. Output Current	AC 254 A 295 KW
额定输出功率 Rated Output Power	285 kW	Rated Output Power	
最大视在功率 Max. Apparent Power 功率因数范围 Power Factor Range 0.8	285 kVA Leading 0.8 Lagging	Max. Apparent Power	352 kVA
	Leaving U.o Lagging	Power Factor Range	0.8 Leading 0.8 Lagging
保护等级 Protective Class	I	Protective Class	Ι
过压等级 Overvoltage Category	III[AC], II[DC]	Overvoltage Category	III[AC], II[DC]
防护等级 Enclosure	IP66	Enclosure	IP66
工作温度范围 Ambient Temperature	-30 °C +60 °C	Ambient Temperature	-30 °C +60 °C
X []i	CE		i 🞯 (E
阳光电源股份有限。 SUNGROW POWER SUPPLY CO.	, LTD.	SUNGROW PO	OWER SUPPLY CO., LTD.
中国安徽省合肥市高新技术产业开发区 No.608 Changning Avenue, New & High Teo Development Zone, Hefei City, Anhui Provin	chnology Industrial	www.sungrowpower.com	Made in China
www.sungrowpower.com 中日	国制造 Made in China		
www.sungrowpower.com 中]			GRID-CONNECTED PV INVERTER SG320HX
www.sungrowpower.com	国制造 Made in China IECTED PV INVERTER SG320HX	Model S/N	scз20нх C-Input
www.sungrowpower.com (+) SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage	副制造 Made in China IECTED PV INVERTER SG320HX 	Model S/N Max. input Voltage	SG320HX C-Input DC 1500 V
www.sungrowpower.com	国制造 Made in China IECTED PV INVERTER SG320HX DC 1500 V DC 500 V	Model S/N Max. Input Voltage Min. MPP Voltage	SG320HX C-Input DC 1500 V DC 500 V
www.sungrowpower.com	<u>副刺流 Made in China</u> IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage	SG320HX C-Input DC 1500 V DC 1500 V DC 1500 V
www.sungrowpower.com (+) SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Current	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14*30 A	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current	SG320HX C-Input DC 1500 V DC 1500 V DC 16*30 A DC 16*30 A
www.sungrowpower.com	<u>副刺流 Made in China</u> IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*60 A
www.sungrowpower.com	<u>副刺造 Made in China</u> IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14*30 A DC 14*60 A	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 15'00 A DC 16''60 A DC 16''60 A
www.sungrowpower.com	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 14*50 A DC 14*60 A AC 800 V (640 ~920 V)	Model S/N Max. input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range	SG320HX C-Input DC 1500 V DC 500 V DC 16:30 A DC 16:30 A DC 16:30 A DC 16:30 A DC 16:30 A DC 16:30 V (640 ~920 V
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. MPP Voltage Max. MPP Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency 3/PE	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14'80 A DC 14'80 A AC 800 V (640 ~920 V) 50/60 Hz	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*30 A DC 16*60 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. MPP Voltage Max. Input Current Isc. PV Output Voltage Range 3/PE Rated Output Frequency Max. Output Current	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*60 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. MPP Voltage Max. MPP Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency 3/PE	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 -920 V) 50/60 Hz AC 254 A 295 kW	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*60 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 KW
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 1500 V DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A 295 kW 352 kVA	Model S/N Max. Input Voltage Min. MPP Voltage Max. NPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 -920 V) 50/60 Hz AC 254 A 295 kW	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*60 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 KW
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range 0	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 1500 V DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A 295 kW 352 kVA	Model S/N Max. Input Voltage Min. MPP Voltage Max. NPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 1500 V DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A 295 kW 352 kVA .8 Leading 0.8 Lagging	Model S/N DI Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA
www.sungrowpower.com (+) SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Min. MPP Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Frequency Max. Output Current Rated Output Power Power Factor Range 0 Protective Class 0	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 1500 V DC 1500 V DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A 295 kW 352 kVA	Model S/N Max. Input Voltage Min. MPP Voltage Max. NPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range Protective Class	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 HZ AC 254 A 295 kW 352 kVA 0.8 Leading 0.8 Lagging
www.sungrowpower.com Image: Sungrowpower.com SUNGROW GRID-CONN Model S/N S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range SIPE Rated Output Frequency Max. Apparent Power Max. Apparent Power Power Factor Range 0 Protective Class Overvoltage Category	副制造 Made in China IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 14*30 A DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 ~920 V) 50/60 Hz AC 254 A 295 kW 352 kVA 8 Leading 0.8 Lagging I III[AC], II[DC]	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Prequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range Protective Class Overvoltage Category	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 225 kW 352 kVA 0.8 Leading 0.8 Lagging I III[AC], II [DC]
www.sungrowpower.com Image: Sungrowpower.com SUNGROW GRID-CONN Model S/N Model S/N Max. Input Voltage DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range 0 Protective Class 0 Overvoltage Category Enclosure	IECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 1500 V DC 14*30 A DC 14*30 A DC 14*60 A AC 800 V (640 -920 V) 50/60 Hz AC 254 A 295 kW 352 kVA .8 Leading 0.8 Lagging I III[AC], II [DC] IP66 -30 ℃ +60 ℃	Model S/N Max. Input Voltage Min. MPP Voltage Max. NPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range Protective Class Overvoltage Category Enclosure Ambient Temperature	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*30 A DC 16*60 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA 0.8 Leading 0.8 Lagging III[AC], II[DC] IP66
www.sungrowpower.com #I SUNGROW GRID-CONN Model S/N Max. Input Voltage DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Output Current Rated Output Power Power Factor Range 0 Protective Class Overvoltage Category Enclosure Ambient Temperature Imperature Imperature	■刺流 Made in China HECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 14*60 A DC 14*60 A AC 800 V (640 -920 V) 50/60 Hz AC 254 A 295 kW 352 kVA 8 Leading 0.8 Lagging I III[AC], II[DC] IP66 -30 ℃ +60 ℃ C €	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range Protective Class Overvoltage Category Enclosure Ambient Temperature	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16*00 A DC 16*00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA 0.8 Leading 0.8 Lagging IIII[AC]. II[DC] IP66 -30 °C +60 °C IIII
www.sungrowpower.com Image: Sungrowpower.com SUNGROW GRID-CONN Model S/N DC-Input Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Voltage Max. Input Current Isc PV AC-Output Output Voltage Range 3/PE Rated Output Frequency Max. Apparent Power Power Factor Range 0 Protective Class Overvoltage Category Enclosure Ambient Temperature	■刺流 Made in China HECTED PV INVERTER SG320HX DC 1500 V DC 500 V DC 500 V DC 14*60 A DC 14*60 A AC 800 V (640 -920 V) 50/60 Hz AC 254 A 295 kW 352 kVA 8 Leading 0.8 Lagging I III[AC], II[DC] IP66 -30 ℃ +60 ℃ C €	Model S/N Max. Input Voltage Min. MPP Voltage Max. MPP Voltage Max. Input Current Isc PV AC Output Voltage Range Rated Output Frequency Max. Output Current Rated Output Power Max. Apparent Power Power Factor Range Protective Class Overvoltage Category Enclosure Ambient Temperature	SG320HX C-Input DC 1500 V DC 500 V DC 1500 V DC 16'00 A C-Output 3/PE AC 800 V (640 ~920 V 50/60 Hz AC 254 A 295 kW 352 kVA 0.8 Leading 0.8 Lagging I III[AC], II [DC] IP66 -30 °C +60 °C

Page 6 of 247

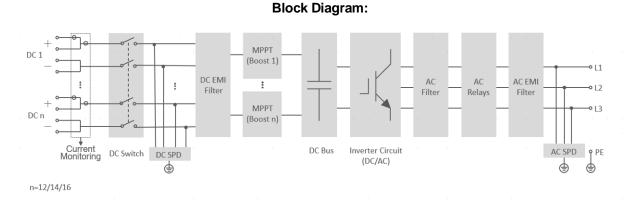
output setting was verified in this test report.

Test item particulars:				
Equipment mobility:	movablehand-heldstationaryfixedtransportablefor building-in			
Connection to the mains:	pluggable equipmentdirect plug-inpermanent connectionfor building-in			
Environmental category:	outdoor indoor indoor ocnditional			
Over voltage category Mains	OVC I OVC II <u>OVC III</u> OVC IV			
Over voltage category PV:	OVC I OVC II OVC IV			
Mains supply tolerance (%):	±10 %			
Tested for power systems:	TN			
IT testing, phase-phase voltage (V):				
Class of equipment:	Class I Class II Class III Not classified			
Mass of equipment (kg):	Approx. 110kg			
Pollution degree	Outside PD3; Inside PD2			
IP protection class:	IP66			
Possible test case verdicts:				
- test case does not apply to the test object	N/A			
- test object does meet the requirement	P (Pass)			
- test object does not meet the requirement	F (Fail)			
- test object does not evaluate according to manufacturer requirements:	N/E			
- this clause is information reference for installation:	Info.			
Testing:				
Date of receipt of test item	2022-07-14 (samples provided by applicant)			
	No sample (Amendment 1 report)			
Date (s) of performance of tests	2022-07-14 to 2022-09-14			
	No tests (Amendment 1 report)			
General remarks:				
The test results presented in this report relate only to the This report shall not be reproduced, except in full, without laboratory.				
The measurement result is considered in conformance with the requirement if it is within the prescribed limit. It is not necessary to account the uncertainty associated with the measurement result. The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.				
This report is not used for social proof function in China				
"(see Enclosure #)" refers to additional information ap "(see appended table)" refers to a table appended to th	pended to the report. e report.			
Throughout this report a \Box comma / \boxtimes point is used	as the decimal separator.			

Name and address of factory (ies):

1. Sungrow Power Supply Co., Ltd.

No.1699 Xiyou Rd., New & High Technology Industrial Development Zone, Hefei 230088 P.R. China 2. Sungrow Power Supply Co., Ltd.


No. 608 Changning Avenue, New & High Technology Industrial Development Zone, Hefei 230088 P.R. China

3. Sungrow Developers (India) Private Limited

Survey No.250/3, T-Begur Village, Kasaba Hobli, Nelamangala Taluk, Bangalore, Karnataka-562123, India

General product information:

These devices are transformer-less grid-connected PV inverters which converts direct current optimized by photovoltaic DC conditioner to alternating current, and they are intended to be connected in parallel with the low-voltage mains or high-voltage grid via isolating transformer to feed current into grid. They are intended for professional incorporation into PV system, and they are assessed on a component test basis.

Model difference:

SG350HX: basic model

SG320HX and SG285HX: same family design product, same hardware as basic model, except output power and current are limited by software.

The product was tested on:

Unless otherwise specified, all tests were performed on the representative model of SG350HX and applicable for other models since they are similar in hardware and just power derating by software.

Hardware version:

V1.0

Software version:

LCD_EUCLASE-S_V11_V01_A; MDSP_EUCLASE-S_V11_V01_A.

Amendment 1 report:

The previous test report No. 6134228.50 issued by DEKRA Testing and Certification (Suzhou) Co., Ltd. dated on 2022-11-28 were updated and including below modification: --- Add CNAS logo on the first page of the test report.

--- Update the description of cyber security evaluated in clause 9.1.7.

After reviewing. No tests were considered necessary.

Page 10 of 247

G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict
6	CONNECTION APPLICATION		
6.1	General		-
6.1.1	This document describes the processes that shall be adopted for both connection of a single Power Generating Module and installations that comprise of a number of Power Generating Modules.		Info.
6.1.2	Type A Power Generating Module(s) ≤ 16A per phase and EREC G98 compliant	Type B, C, D Power Generating Modules.	N/A
6.1.2.1	A connection procedure to facilitate the connection and operation of Fully Type Tested Power Generating Modules with aggregate Registered Capacity of less than or equal to 16 A per phase in parallel with public Low Voltage Distribution Network is given in EREC G98 and is not considered further in this document. These are referred to as micro-generators.		N/A
6.1.3	Power Park Modules		Р
6.1.3.1	Where an installation comprises a single Generating Unit, the application process, technical and commissioning requirements are based on the Registered Capacity of that Generating Unit. Where an installation comprises multiple Generating Units the application process, technical and commissioning requirements will generally be based on the Registered Capacity of each Power Park Module, and also on the extent to which each Power Park Module is Type Tested.		Ρ
6.1.3.2	Where a new Generating Unit is connected to an existing installation the treatment of the addition will depend on the EREC under which the existing installation was connected. If the existing installation was connected under EREC G59 or EREC G83 then the new Generating Unit will be treated as a separate Power Park Module and managed for compliance with this EREC G99 as a separate Power Generating Module. If, however, the existing installation was completed in compliance with EREC G98 or EREC G99, then the new Power Park Module must be added to the aggregate capacity of the complete installation which shall be used to determine which EREC is applicable.		Ρ
6.1.4	Synchronous Power Generating Modules		N/A
6.1.4.1	Where an installation comprises a single Synchronous Power Generating Module or multiple Synchronous Power Generating Modules, the application process, technical and commissioning requirements are based on the Registered Capacity of each Synchronous Power Generating Module.	Not Synchronous Power Generating Modules.	N/A

Page 11 of 247

G99/1-8

	G99/1-0		
Clause	Requirement - Test	Result - Remark	Verdict
6.1.4.2	Where one or more new Synchronous Power Generating Module(s) is to be connected to an existing installation then each new Power Generating Module will be treated as a separate Synchronous Power Generating Module. Only the new Power Generating Module will be required to meet the requirements of this EREC G99 or EREC G98 if applicable. However, note that if the aggregated capacity of all the Power Generating Modules in the Power Generating Facility (ie the Registered Capacity of the Power Generating Facility) reaches the threshold for large as defined in the Grid Code (ie 10 MW in the north of Scotland; 30 MW in the south of Scotland, 100 MW in England and Wales), then the Generator will have to ensure compliance with relevant parts of the Grid Code. Similarly if the Registered Capacity of a Power Generating Facility in England and Wales is 50 MW or more, the Generator will have to comply with paragraphs 6.4.4 and 13.8.		N/A
6.1.5	Illustrative examples		Info.
6.1.5.1	Table 6.1 is provided to illustrate some of the connection scenarios and the EREC requirements.		Info.
6.1.5.2	In respect of Table 6.1 the aggregate Registered Capacity of all the Power Generating Modules in the Power Generating Facility will be taken into account when the DNO considers the effect of the connection on the Distribution Network.		Info.

Page 12 of 247

			G99/1-8		
Clause	Requirement - Tes	t		Result - Remark	Verdict
	Table 6.1 Examples	of connection sce	enarios		Info.
	Details of the existing Power Generating Facility	Planned expansion to the Power Generating Facility	Compliance requirements		
	Nil	Type A Generating Unit(s)	The unit(s) comprise a new Power Generating Module for compliance EREC G99 ⁴ .		
	Synchronous Power Generating Modules commissioned under EREC G83 or EREC G59	Synchronous Power Generating Modules Figure 6.1	Original and additional Power Generating Modules treated separately. Only additional Power Generating Modules need to comply with EREC G99; the entire Power Generating Facility needs to comply with operational requirements.		
	Synchronous Power Generating Modules commissioned under EREC G98 or EREC G99	Synchronous Power Generating Modules Figure 6.2	Original and additional Power Generating Modules treated separately. All Power Generating Modules need to comply with EREC G99 ⁵ and with operational requirements.		
	Synchronous Power Generating Modules commissioned under EREC G83 or EREC G59 and Synchronous Power Generating Modules commissioned under EREC G98 or EREC G99	Synchronous Power Generating Modules Figure 6.3	Original and additional Power Generating Modules treated separately. Additional Power Generating Modules need to comply with EREC G99; all need to comply with operational requirements.		
	Power Park Module commissioned under EREC G83 or EREC G59	Asynchronous Generating Units Figure 6.4	New units form a new Power Park Module. Original and additional Power Park Modules treated separately. Only additional Power Park Modules need to comply with EREC G99; all need to comply with operational requirements.		
	Power Park Module commissioned under EREC G98 or EREC G99	Asynchronous Generating Units Figure 6.5	Units aggregated to form a new single Power Generating Module. Compliance required for the new module size, with EREC G99 and with operational requirements.		
	Power Park Module commissioned under EREC G98 or EREC G99	Storage DC coupled (ie connected to the existing Inverters with no change to Inverters) Figure 6.6	No compliance effect. Compliance remains based on existing Inverters, ie on the existing Power Park Module. The Generator must, under their Connection Agreement apply to the DNO before connecting the new storage.		
	Power Park Module commissioned under EREC	Storage AC coupled – ie storage	The new storage units form an independent Power Park Module		
6.1.6	Interaction with the	NETSO			Р
6.1.6.1	It should be noted that if the Registered Capacity of all Power Generating Module (synchronous together with asynchronous) on one or more sites in common ownership is >50 MW, then the Generator becomes licensable.				Info.
6.1.6.2	Generators with an agreement with the NETSO may be required to comply with applicable requirements of the Grid Code. Where Grid Code requirements apply, it is the Generator's responsibility to comply with the relevant parts of both the Distribution Code and Grid Code.				P
6.2	Application for C	onnection			Р

Page 13 of 247

G99/1-8

	G99/1-8	
Clause	Requirement - Test Result - Remark	Verdict
6.2.1	Information about the Power Generating Module(s) is needed by the DNO so that it can assess the effect that a Power Generating Facility may have on the Distribution Network. This document details the parameters to be supplied by a Generator wishing to connect Power Generating Module(s) that do not comply with EREC G98 to a Distribution Network. This document also enables the DNO to request more detailed information if required.	P
6.2.2	Integrated Micro Generation and Storage procedure	N/A
6.2.2.1	 The Generator may wish to install Integrated Micro Generation and Storage. Where all of the following conditions apply, the Integrated Micro Generation and Storage procedure can be followed: The Power Generating Modules are located in a single Generator's Installation; The total aggregate capacity of the Power Generating Modules (including Electricity Storage devices) is between 16 A and 32 A per phase; The total aggregate capacity of the Power Generating Modules that are Electricity Storage devices does not exceed 16 A per phase and the total aggregate capacity of the Power Generating Modules that are not Electricity Storage devices does not exceed 16 A per phase. Note that if the total aggregated capacity of Electricity Storage and non- Electricity Storage devices is no greater than 16 A per phase, the single premises procedure described in EREC G98 applies; All of the Power Generating Modules (including Electricity Storage devices) are connected via EREC G98 Fully Type Tested Inverters; An EREC G100 compliant export limitation scheme is present that limits the export from the Generator's Installation to the Distribution Network to 16 A per phase; and The Power Generating Modules will not operate 	N/A
	when there is a loss of mains situation.	
6.2.2.2	If all the conditions in 6.2.2.1 are satisfied, the Generator should complete an application in a format as shown in Form A1-2 (Annex A.1). Otherwise the Generator should refer to the connection application procedure for Type A Power Generating Modules.	N/A

Γ

Page 14 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
6.2.2.3	The planned commissioning date stated on the application form shall be within 10 working days and 3 months from the date that the application is submitted to the DNO. Confirmation of the commissioning of each Power Generating Module shall be made no later than 28 days after commissioning (where tests and checks are not witnessed). Confirmation shall be provided in a format as shown in Form A3-2 (Annex A.3). In addition to Form A3-2, an EREC G100 Export Limitation Scheme Installation and Commissioning Tests form shall be submitted to the DNO to confirm that the Export Limitation Scheme meets the requirements set out in EREC G100. Confirmation shall be provided in a format as shown in EREC G100 Appendix B.		N/A
6.2.3	Power Generating Facilities which include Type A Power Generating Modules	Type B, C, D Power Generating Modules.	N/A
6.2.3.1	For Type A Power Generating Modules the compliance, testing and commissioning requirements are detailed in Section 16 of this EREC G99.	Type B, C, D Power Generating Modules.	N/A
6.2.3.2	The Generator should apply to the local DNO for connection using the DNO's Standard Application Form (available from the DNO's website). On receipt of the application, the DNO will assess whether any Distribution Network studies are required and whether there is a requirement to witness the commissioning tests. In some cases studies to assess the impact on the Distribution Network may need to be undertaken before a firm quotation can be provided to the Generator. On acceptance of the quote, any works at the connection site and any associated facilitating works will need to be completed before the Power Generating Module can be commissioning tests, the DNO will sanction permanent energisation of the Power Generating Module in accordance with Section 16 of this EREC G99.		N/A
6.2.4	Power Generating Facilities which include Type B, Type C or Type D Power Generating Modules		Р
6.2.4.1	The connection process is similar to that described in paragraph 6.2.2 above, although detailed system studies will almost certainly be required and consequently the Generator might need to provide additional information. The information should be provided using the Standard Application Form (generally available from the DNO's website). The data that will generally be required is defined in the Distribution Code, Data Registration Code (DDRC), Schedules 5a, 5b and 5c.		Ρ
6.2.4.2	For Type B and Type C Power Generating Modules the compliance, testing and commissioning requirements are detailed in Sections 17 and 18 respectively of this EREC G99. On successful completion of a Type B or Type C Power Generating Module Document the DNO will issue a Final Operational Notification to the Generator.		P

Page 15 of 247

G99/1-8	
---------	--

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
6.2.4.3	For a Type D Generating Unit, once all the relevant documents have been provided to the DNO to its satisfaction, the DNO will issue an Energisation Operational Notification to the Generator followed by an Interim Operational Notification and a Final Operational Notification. This staged process is described further in Section 19 of this EREC G99.		P
6.2.4.4	Generators who own Type B and Type C Power Generating Modules do not have permanent rights to operate their Power Generating Modules without a valid Final Operational Notification which will be issued by the DNO following completion of the commissioning tests and process, refer to paragraphs 17.4.3 and 18.4.3.		Р
6.2.4.5	 Generators who own Type D Power Generating Modules do not have rights to operate their Power Generating Modules without either: (a) a valid Final Operational Notification, refer to paragraph 19.5.4; (b) an Interim Operational Notification, refer to paragraph 19.3.6; or (c) a Limited Operational Notification, refer to paragraph 19.6.4.1. 		Ρ
6.3	System Analysis for Connection Design Type A, Type	B. Type C and Type D	Info.
6.4	Provision of Information		Info.
7	CONNECTION ARRANGEMENTS		Р
7.1	Operating Modes		Р
7.1.1	Power Generating Modules may be designed for one of three operating modes. These are termed long-term parallel operation, infrequent short-term parallel operation and switched alternative-only operation. In the case that a Power Generating Module is designed to switch between these modes of operation, it must be designed to comply with the requirements for each mode.	Long-Term Parallel Operation.	Ρ
7.1.2	Equipment other than Generating Units (eg traction loads, lift motors etc) may act as a short term source of energy, and inject electrical energy into the Customer's Installation when they operate in a regenerative mode. In general EREC G99 will not apply as there will be no need to make any specific design accommodation for such equipment as it is unlikely that they will support any possible power island for a significant length of time. Where such equipment can act as a source of electrical energy for more than a few seconds (say typically 20 s), the DNO will advise the Customer if the Customer's Installation requires any special consideration such as reverse power protection on a case by case basis.		N/A

Page 16 of 247

G99/1-8

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
7.1.3	In general the technical requirements in EREC G99 will not apply for non-controllable storage technology such as synchronous compensators and synchronous flywheels. This is because there will be no need to make any specific design accommodation for such equipment as it is unlikely that they will support any possible power island for a significant length of time. Where such equipment can act as a source of electrical energy for more than a few seconds (say typically 20 s), the DNO will advise the Customer if the Customer's Installation requires any special consideration, such as reverse power protection or short circuit current contribution assessment, on a case by case basis.		N/A
7.2	Long-Term Parallel Operation		Р
7.2.1	This refers to the frequent or long-term operation of Power Generating Modules in parallel with the Distribution Network. Unless otherwise stated, all sections in this EREC G99 are applicable to this mode of operation.		Р
7.3	Infrequent Short-Term Parallel Operation		N/A
7.4	Switched Alternative-Only Operation		N/A
7.5	Phase Balance of Type A Power Generating Module output at LV		N/A
7.5.1	Connection of single phase Power Generating Modules may require Distribution Network reinforcement and extension before commissioning for technical reasons (such as voltage issues and unacceptable phase imbalance) depending on the point of connection and Distribution Network design.	Type B, C, D Power Generating Modules.	N/A
7.5.2	A solution to these voltage issues and phase imbalance issues may be to utilise 3-phase Power Generating Modules or to use multiple single phase Power Generating Modules connected across three phases.		N/A
7.5.3	Where single phase Power Generating Modules are being used the Generator should design the installation on a maximum unbalance output of 16 A between the highest and lowest phase.	3-phase PV inverter	N/A
7.5.4	In order to illustrate this requirement examples of acceptable and unacceptable connections have been given in Annex A.5.		N/A
7.6	Type A Power Generating Module capacity for single and split LV phase supplies		N/A
7.6.1	The maximum aggregate capacity of Power Generating Modules that can be connected to a single phase supply is 17 kW. The maximum aggregate capacity of Power Generating Modules that can be connected to a split single phase supply is 34 kW.	3-phase PV inverter	N/A

Page 17 of 247

	G99/1-8	· · · · · · · · · · · · · · · · · · ·	
Clause	Requirement - Test	Result - Remark	Verdict
7.6.2	There is no requirement to provide intertripping between single phase Inverters where these are installed on multi- phase supplies up to a limit of 17 kW per phase (subject to balance of site output as per Section 7.5). A single phase 17 kW connection may result in an imbalance of up to 17 kW following a Distribution Network or Power Generating Module outage. However the connection design should result in imbalance under normal operation to be below 16 A between phases as noted above.		N/A
7.6.3	Power Generating Facilities with a capacity above 17 kW per phase are expected to comprise three phase units. The requirement to disconnect all phases following a fault in the Generator's Installation or a Distribution Network outage applies to three phase the Power Generating Modules only and will be tested as part of the compliance testing of the Power Generating Module. In some parts of the country where provision of three phase networks is costly then the DNO may be able to provide a solution using single or spilt phase networks for Power Generating Facilities above the normal limits as set out above.		N/A
7.7	Voltage Management Units in Generator's premises		Р
7.7.1	Voltage Management Units are becoming more popular and use various methods, in most cases, to reduce the voltage supplied from the DNO's Distribution Network before it is used by the Generator. In some cases where the DNO's Distribution Network voltage is low they may increase the voltage supplied to the Generator. Some technologies are only designed to reduce voltage and cannot increase the voltage.		Info.
7.7.2	The use of such equipment has the advantage to the Generator of running appliances at a lower voltage and in some cases this can reduce the energy consumption of the appliance. Some appliances when running at a lower voltage will result in higher current consumption as the device needs to take the same amount of energy from the system to carry out its task.		Info.
7.7.3	If a Voltage Management Unit is installed between the Connection Point and the Power Generating Module in a Generators Installation, it may result in the voltage at the Generator side of the Voltage Management Unit remaining within the limits of the protection settings defined in Table 10.1 while the voltage at the Connection Point side of the unit might be outside the limits of the protection settings. This would negate the effect of the protection settings. Therefore, this connection arrangement is not acceptable and all Power Generating Modules connected to the DNO's LV Distribution Network under this Engineering Recommendation must be made on the Connection Point side of any Voltage Management Unit installed in a Generator's Installation.		N/A

Page 18 of 247

G99/1-8

	G99/1-8	-	
Clause	Requirement - Test	Result - Remark	Verdict
7.7.4	Generators should note that the overvoltage setting defined in Table 10.1 is 4% above the maximum voltage allowed for the voltage from the DNO's Distribution Network under the ESQCR and that provided they have designed their installation correctly there should be very little nuisance tripping of the Power Generating Module. Frequent nuisance tripping of a Power Generating Module may be due to a fault in the Generator's Installation or the operation of the DNO's Distribution Network at too high a voltage. Generators should satisfy themselves that their installation has been designed correctly and all Power Generating Modules are operating correctly before contacting the DNO if nuisance tripping continues. Under no circumstances should they resort to the use of Voltage Management Units installed between the Connection Point and the Power Generating Module.		Ρ
8	EARTHING	1	Р
8.1	General		Р
8.1.1	The earthing arrangements of the Power Generating Module shall satisfy the requirements of DPC4 of the Distribution Code.		Р
8.2	Power Generating Modules with a Connection Point at	: HV	Р
8.3	Power Generating Modules with a Connection Point at	LV	Р
8.3.1	LV Distribution Networks are always solidly earthed, and the majority are multiple earthed. Design practice for protective multiple earthing is detailed in the Energy Networks Association publications including Engineering Recommendation G12, and in the references contained in those publications.		Р
8.3.2	The winding configuration and method of earthing connection shall be agreed with the DNO.		Р
8.3.3	In addition, where the Power Generation Facility's Connection Point is at Low Voltage the following shall apply: Where an earthing terminal is provided by the DNO it may be used by a Power Generation Facility for earthing the Power Generating Module, provided the DNO earth connection is of adequate capacity.		P
9	NETWORK CONNECTION DESIGN AND OPERATION		Р
9.1	General Criteria	1	Р
9.1.1	As outlined in Section 5, DNOs have to meet certain statutory and Distribution Licence obligations when designing and operating their Distribution Networks. These obligations will influence the options for connecting Power Generating Modules.		Р

Page 19 of 247

G99/1-8

	G99/1-8	-	
Clause	Requirement - Test	Result - Remark	Verdict
9.1.2	The technical and design criteria to be applied in the design of the Distribution Network and Power Generating Module connection are detailed in this document and DPC 4 of the Distribution Code. The criteria are based upon the performance requirements of the Distribution Network necessary to meet the above obligations.		Р
9.1.3	The Distribution Network, and any Power Generating Module connection to that network, shall be designed:		Р
	 (a) to comply with the obligations (to include security, frequency and voltage; voltage disturbances and harmonic distortion; auto reclosing and single phase protection operation). 		Ρ
	(b) according to design principles in relation to Distribution Network's plant and equipment, earthing, voltage regulation and control, and protection as outlined in DPC4, subject to any Modification to which the DNO may reasonably consent.		Р
9.1.4	Power Generating Modules should meet a set of technical requirements in relation to its performance with respect to frequency and voltage, control capabilities, protection coordination requirements, Phase (Voltage) Unbalance requirements, neutral earthing provisions, islanding and Black Start Capability as applicable. The technical connection requirements in this chapter are common to all Power Generating Modules.		Ρ
9.1.5	In addition requirements for Type A Power Generating Modules are detailed in Section 11. Requirements for Type B Power Generating Modules are detailed in Section 12. Requirements for Type C and Type D Power Generating Modules are detailed in Section 13.		Р
9.1.6	The Reactive Power and voltage control requirements are given in Section 11, Section 12 and Section 13 for Type A Power Generating Modules, Type B Power Generating Modules, and Type C and Type D Power Generating Modules respectively. They are summarised in Table D.4 for information.		Ρ
9.1.7	Every Power Generating Module and any associated equipment must be designed and operated appropriately to comply with cyber security requirements. The Generator shall consider all cyber security risks applicable to the Power Generating Module in terms of the communication between any energy management system etc and also in terms of interaction with any system of the Manufacturer for product management.		Ρ

Page 20 of 247

G99/1	-8
-------	----

<u>.</u>			
Clause	Requirement - Test	Result - Remark	Verdict
9.1.8	 The Generator shall provide information describing the high level cyber security approach, as well as the specific cyber security requirements complied with. The statement will make appropriate reference to the Power Generating Facilities compliance with: ETSI EN 303 645; relevant aspects of PAS 1879 "Energy smart appliances – Demand side response operation – Code of practice"; relevant aspects of "Distributed Energy Resources – Cyber Security Connection Guidance" published by BEIS and the ENA; Any other relevant standard that has been incorporated in the design of the Power Generating Module. 	The communication between the inverter and the external network is implemented by a separate device (data logger with model name Logger 4000 manufactured by the same manufacturer as inverter - Sungrow). High level cyber security approach as well as the specific cyber security requirements are evaluated against ETSI EN 303 645. Compliance to ETSI EN 303 645 is recorded in a separate document and is provided by manufacturer.	Ρ
9.2	Network Connection Design for Power Generating Modules		Р
9.3	Step Voltage Change and Rapid Voltage Change		Р
9.4	Power Quality		Р
9.4.1	Introduction		Р
9.4.1.1	The connection and operation of Power Generating Modules may cause Phase (Voltage) Unbalance and/or a distortion of the Distribution Network voltage waveform resulting in voltage fluctuations and harmonics.		Ρ
9.4.2	Flicker		Р
9.4.2.1	Where the input motive power of the Power Generating Module may vary rapidly, causing corresponding changes in the output power, flicker may result. The operation of a Power Generating Module including synchronisation, run-up and desynchronisation shall not result in flicker that breaches the limits for flicker that is non-compliant with EREC P28.		Ρ
9.4.2.2	The supply impedance of the Distribution Network needs to be considered to ensure that the emissions produced by the Power Generating Module do not cause a problem on the Distribution Network.		Ρ

Page 21 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
9.4.2.3	For Power Generating Modules up to 17 kW per phase or 50 kW three phase voltage step change and flicker measurements as required by BS EN 61000-3-11 shall be made and recorded in the test declaration form A2-1 or form A2-3 as applicable for the Power Generating Module. The DNO will use these declared figures to calculate the required maximum supply impedance required for the connection to comply with EREC P28. This calculation may show that the voltage fluctuations will be greater than those permitted and hence reinforcement of the Distribution Network may be required before the Power Generating Module can be connected. Detailed testing requirements are described in Annex A.7.		Ρ
9.4.3	Harmonic Emissions		Р
9.4.3.1	Harmonic currents produced within the Generator's system and modification of the harmonic impedance caused by the addition of the Generator's installation may cause excessive harmonic voltage distortion in the Distribution Network. The Generator's Installation must be designed and operated to comply with the planning criteria for harmonic voltage distortion as specified in EREC G5. EREC G5, like all planning standards referenced in this recommendation, is applicable at the time of connection of additional equipment to a Generator's Installation.		Ρ
9.4.3.2	For Power Generating Modules of up to 17 kW per phase or 50 kW three phase harmonic measurements as required by BS EN 61000-3-12 shall be made and recorded in the test declaration form A2-1 or form A2-3 as applicable for the Power Generating Module. The DNO will use these declared figures to calculate the required maximum supply impedance required for the connection to comply with BS EN 61000-3-12 and will use this data in their design of the connection for the Power Generating Module. This standard requires a minimum ratio between source fault level and the size of the Power Generating Module, and connections in some cases may require the installation of a transformer between 2 and 4 times the rating of the Power Generating Module in order to accept the connection to a DNO's Distribution Network. Detailed testing requirements are described in Annex A.7		Ρ
9.4.3.3	Where the Power Generating Module is connected via a long cable circuit the likelihood of a resonant condition is greatly increased, especially at 132 kV. This arises from the reaction of the transformer inductance with the cable capacitance. Resonance is likely in the low multiples of the fundamental frequency (8th-11th harmonic). The resonant frequency is also a function of the Total System fault level. If there is the possibility that this can change significantly eg by the connection of another Power Generating Module then a full harmonic study should be carried out.		N/A

TRF No. G99/1-8_V1.0

Report No.: 6134228.51V1.1

Page 22 of 247

G99/1-8

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
9.4.4	Voltage imbalance		Р
9.4.4.1	EREC P29 is a planning standard which provides limits for voltage unbalance caused by uneven loading of three phase supply systems. Power Generating Modules should be capable of performing satisfactorily under the conditions it defines. The existing voltage unbalance on an urban Distribution Network rarely exceeds 0.5% but higher levels, in excess of 1%, may be experienced at times of high load and when outages occur at voltage levels above 11 kV. 1% may exist continuously due to unbalance of the system impedance (common on remote rural networks). In addition, account can be taken of the neutralising effect of rotating plant, particularly at 11 kV and below. BS EN 50160 contains details of the variations and disturbances to the voltage which shall be taken into account in selecting equipment from an appropriate specification for installation on or connected to the Distribution Network.		P
9.4.4.2	The level of voltage unbalance at the Point Of Common Coupling should be no greater than 1.3% for systems with a nominal voltage below 33 kV, or 1% for other systems with a nominal voltage no greater than 132 kV. Overall, voltage unbalance should not exceed 2% when assessed over any one minute period. EREC P29, like all planning standards, is applicable at the time of connection.		Р
9.4.4.3	For Power Generating Facilities of 50 kW or less Section 7.5 of this document specifies maximum unbalance of Power Generating Modules. Where these requirements are met then no further action is required by the Generator.		Р
9.4.5	Power Factor correction equipment is sometimes used with Power Park Modules to decrease Reactive Power flows on the Distribution Network. Where the Power Factor correction equipment is of a fixed output, stable operating conditions in the event of loss of the DNO supply are extremely unlikely to be maintained, and therefore no special protective actions are required in addition to the standard protection specified in this document.		P
9.4.6	DC Injection		Р
9.4.6.1	The effects of, and therefore limits for, DC currents injected into the Distribution Network is an area currently under investigation. Until these investigations are concluded the limit for DC injection is less than 0.25% of the AC rating per Power Generating Module.	See appended table.	P
9.4.6.2	The main source of these emissions are from transformer-less Inverters. Where necessary DC emission requirements can be satisfied by installing a transformer on the AC side of an Inverter.		Р
9.5	System Stability		Р

Page 23 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
9.5.1	Instability in Distribution Networks may result in unacceptable quality of supply and tripping of Generator's plant. In severe cases, instability may cascade across the Distribution Network, resulting in widespread tripping and loss of demand and generation. There is also a risk of damage to plant.		Ρ
9.5.2	In general, System Stability is an important consideration in the design of Power Generating Module connections to the Distribution Network at 33 kV and above. Stability considerations may also be appropriate for some Power Generating Module connections at lower voltages. The risks of instability generally increase as Power Generating Module capacity increases relative to the fault level infeed from the Distribution Network at the Connection Point.		Ρ
9.5.3	System Stability may be classified into several forms, according firstly to the main system variable in which instability can be observed, and secondly to the size of the system disturbance. In Distribution Networks, the forms of stability of interest are rotor angle stability and voltage stability.		Ρ
9.5.3.1	Rotor angle stability refers to the ability of synchronous machines in an interconnected system to remain in Synchronism after the system is subjected to a disturbance.		N/A
9.5.3.2	Voltage stability refers to the ability of a system to maintain acceptable voltages throughout the system after being subjected to a disturbance.		Р
9.5.3.3	Both rotor angle stability and voltage stability can be further classified according to the size of the disturbance.		N/A
9.5.3.4	Small-disturbance stability refers to the ability of a system to maintain stability after being subjected to small disturbances such as small changes in load, operating points of Power Generating Modules, transformer tap-changing or other normal switching events.		Ρ
9.5.3.5	Large-disturbance stability refers to the ability of a system to maintain stability after being subjected to large disturbances such as short-circuit faults or sudden loss of circuits or Power Generating Modules.		Ρ
9.5.3.6	Traditionally, large-disturbance rotor angle stability (also referred to as transient stability) has been the form of stability predominantly of interest in Distribution Networks with synchronous machines. However, it should be noted that the other forms of stability may also be important and may require consideration in some cases.		N/A
9.5.4	It is recommended that a Power Generating Module and its connection to the Distribution Network be designed to maintain stability of the Distribution Network for a defined range of initial operating conditions and a defined set of system disturbances.		Ρ

Page 24 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
9.5.4.1	The range of initial operating conditions should be based on those which are reasonably likely to occur over a year of operation. Variables to consider include system loads, system voltages, system outages and configurations, and Power Generating Module operating conditions.		Ρ
9.5.4.2	The system disturbances for which stability should be maintained should be selected on the basis that they have a reasonably high probability of occurrence. It is recommended that these include short-circuit faults on single Distribution Network circuits (such as transformers, overhead lines and cables) and busbars, that are quickly cleared by main protection.		Ρ
9.5.5	With the system in its normal operating state, it is desirable that all Power Generation Modules remain connected and stable for any of the following credible fault outages;		Р
	 i. any one single circuit overhead line, transformer feeder or cable circuit, independent of length, ii. any one transformer or reactor, iii. any single section of busbar at or nearest the point of connection where busbar protection with a total clearance time of less than 200ms is installed, iv. if demand is to be secured under a second circuit outage as required by EREC P2, fault outages (a) or (b), overlapping with any pre-existing first circuit outage, usually for maintenance purposes. In this case the combination of circuit outages considered should be that causing the most onerous conditions for System Stability, taking account of the slowest combination of main protection, circuit breaker operating times and strength of the connections to the system remaining after the faulty circuit or circuits have been disconnected. 		
9.5.6	It should be noted that it is impractical and uneconomical to design for stability in all circumstances. This may include double circuit fault outages and faults that are cleared by slow protection. Power Generating Modules that become unstable following system disturbances shall be disconnected as soon as possible to reduce the risk of plant damage and disturbance to the system.		Ρ

TRF No. G99/1-8_V1.0

Page 25 of 247

G99/1-8			
Clause	Requirement - Test	Result - Remark	Verdict
9.5.7	 Various measures may be used, where reasonably practicable, to prevent or mitigate system instability. These may include Distribution Network and Power Generating Module solutions, such as: (a) improved fault clearance times by means of faster protection; (b) improved performance of Power Generating Module control systems (excitation and governor/prime mover control systems; Power System Stabilisers to improve damping); (c) improved system voltage support (provision from either Power Generating Module or Distribution Network plant); (d) reduced plant reactance's (if possible); (e) installation of protection to identify pole-slipping; (f) increased fault level infeed. In determining mitigation measures which are reasonably practicable, due consideration should be given to the cost of implementing the measures and the benefits to the Distribution Network and Generators in terms of reduced risk of system instability. 		Ρ
9.6	Island Mode		P
9.6.1	 There are two specific instances of island mode to be considered: (a) where the Generator wishes to deliberately move from the long-term parallel mode of operation to the situation where the Generator's Power Generating Module(s) is arranged to supply just the load presented by the Customer's Installation, with the Customer's Installation disconnected from the DNO's Distribution Network; or (b) where one or more Power Generators, support an isolated part of the DNO's Distribution Network, maintaining supplies to other Customers of the DNO. 		Ρ
9.6.2	Customer's Installation Island		Р
9.6.2.1	Wherever a Generator's Power Generating Module runs in parallel with the DNO's Distribution Network for more than 5 minutes per month, the design of the Power Generating Module and the Customer's Installation must meet the requirements for long-term parallel operation and comply with all the appropriate requirements of this EREC G99.		Ρ
9.6.2.2	Where a Generator intends to operate the Power Generating Module so that it supplies just the Customer's Installation, it is the Generator's responsibility to ensure the safety of the Customer's Installation in respect of electrical and general safety.		Ρ

Page 26 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
9.6.2.3	The arrangements of Figures 8.6 (HV) and 8.9 (LV) will generally be appropriate for earthing and switching arrangements. Exact designs of Customer's Installations will vary, but the functional requirements of these figures should be implemented.		Ρ
9.6.2.4	It is the Generator's responsibility to ensure appropriate and safe synchronisation to, and disconnection from, the DNO's Distribution Network, respecting the requirements of EREC P28 on voltage disturbances on the DNO's Distribution Network.		Ρ
9.6.3	DNO's Distribution Network Island		Р
9.6.3.1	A fault or planned outage, which results in the disconnection of a Power Generating Module, together with an associated section of Distribution Network, from the remainder of the Total System, creates the potential for island mode operation. It will be necessary for the DNO to decide, dependent on local network conditions, if it is desirable for the Generators to continue to generate onto the islanded DNO's Distribution Network. The key potential advantage of operating in island mode is to maintain continuity of supply to the portion of the Distribution Network containing the Power Generating Module. The principles discussed in this section generally also apply where Power Generating Modules on a Generator's site is designed to maintain supplies to that site in the event of a failure of the DNO supply.		Ρ
9.6.3.2	 When considering whether Power Generating Modules can be permitted to operate in island mode,10 detailed studies need to be undertaken to ensure that the islanded system will remain stable and comply with all statutory obligations and relevant planning standards when separated from the remainder of the Total System. Before operation in island mode can be allowed, a contractual agreement between the DNO and Generator shall be in place and the legal liabilities associated with such operation shall be carefully considered by the DNO and the Generator. Consideration should be given to the following areas: (a) load flows, voltage regulation, frequency regulation, voltage unbalance, voltage flicker and harmonic voltage distortion; (b) earthing arrangements; (c) short circuit currents and the adequacy of protection arrangements; (d) System Stability; (e) re-synchronisation to the Total System; (f) safety of personnel. 		Ρ

Page 27 of 247

	G99/1-8	Report No.: 01342	
Clause	Requirement - Test	Result - Remark	Verdict
9.6.3.3	Suitable equipment will need to be installed to detect that an island situation has occurred and an intertripping scheme is preferred to provide absolute discrimination at the time of the event. Confirmation that a section of Distribution Network is operating in island mode, and has been disconnected from the Total System, will need to be transmitted to the Power Generating Module(s) protection and control schemes.		P
9.6.3.4	The ESQCR requires that supplies to Customers are maintained within statutory limits at all times ie when they are supplied normally and when operating in island mode. Detailed system studies including the capability of the Power Generating Module and its control / protections systems will be required to determine the capability of the Power Generating Module to meet these requirements immediately as the island is created and for the duration of the island mode operation.		P
9.6.3.5	The ESQCR also require that Distribution Networks are earthed at all times. Generators, who are not permitted to operate their installations and plant with an earthed star- point when in parallel with the Distribution Network, shall provide an earthing transformer or switched star-point earth for the purpose of maintaining an earth on the system when islanding occurs. The design of the earthing system that will exist during island mode operation should be carefully considered to ensure statutory obligations are met and that safety of the Distribution Network to all users is maintained. Further details are provided in Section 8		P
9.6.3.6	Detailed consideration shall be given to ensure that protection arrangements are adequate to satisfactorily clear the full range of potential faults within the islanded system taking into account the reduced fault currents and potential longer clearance times that are likely to be associated with an islanded system.		P
9.6.3.7	Switchgear shall be rated to withstand the voltages which may exist across open contacts under islanded conditions. The DNO may require interlocking and isolation of its circuit breaker(s) to prevent out of phase voltages occurring across the open contacts of its switchgear. Intertripping or interlocking should be agreed between the DNO and the Generator where appropriate.	It's depended on Installer.	N/A
9.6.3.8	It will generally not be permissible to interrupt supplies to DNO Customers for the purposes of re-synchronisation. The design of the islanded system shall ensure that synchronising facilities are provided at the point of isolation between the islanded network and the DNO supply. Specific arrangements for this should be agreed and recorded in the Connection Agreement with the DNO. If no facilities exist for the subsequent re- synchronisation with the rest of the DNO's Distribution Network then the Generator will, under DNO instruction, ensure that the Power Generating Module is disconnected for re-synchronisation.		P
9.7	Fault Contributions and Switchgear Considerations	I	Р

Page 28 of 247

G99/1-8

	G99/1-8			
Clause	Requirement - Test	Result - Remark	Verdict	
10	PROTECTION		Р	
10.1	General		Р	
10.1.1	The main function of the protection systems and settings described in this document is to prevent the Power Generating Module supporting an islanded section of the Distribution Network when it would or could pose a hazard to the Distribution Network or Customers connected to it. The settings recognize the need to avoid nuisance tripping and therefore require a two stage approach where practicable, ie to have a long time delay for smaller excursions that may be experienced during normal Distribution Network operation, to avoid nuisance tripping, but with a faster trip, where possible, for greater excursions.		Ρ	
10.1.2	In accordance with established practice it is for the Generator to install, own and maintain this protection. The Generator can therefore determine the approach, ie per Power Generating Module or per installation, and where in the installation the protection is sited.		Р	
10.1.3	Where a common protection system is used to provide the protection function for multiple Power Generating Modules the complete installation cannot be considered to comprise Fully Type Tested Power Generating Modules if the protection and connections are made up on site and so cannot be factory tested or Type Tested. If the units or Power Generating Modules are specifically designed to be interconnected on site via plugs and sockets, then provided the assembly passes the function tests required in Annex A.2 (Form A2-4), the Power Generating Modules can retain Type Tested status.		Ρ	

Page 29 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
10.1.4	 Type Tested Interface Protection shall have protection settings set during manufacture. An Interface Protection device or relay can only be considered Type Tested if: (a) The frequency and LoM protection settings are factory set in firmware by the Manufacturer to those in Table 10.1 and cannot be changed outside the factory (except as provided by (e) below). 		Ρ
	 (b) The voltage protection settings are factory set to those in Table 10.1 and can be changed by agreement with the DNO and by personnel specifically instructed by the Generator to make this change. 		
	(c) The access by the personnel specifically instructed shall be controlled by a password, pin or a physical switch that has the facility to be sealed.		
	(d) Any Interface Protection device functionality other than the voltage protection settings (eg such as any auto reclosing functionality) can only be changed by personnel specifically empowered to do so by the Generator.		
	(e) Any changes to device firmware etc, where Type Tested status is to be retained, outside of the original factory environment shall be undertaken by personnel specifically empowered and equipped for that task by the Manufacturer.		
10.1.5	Once the Power Generating Modules has been installed and commissioned the protection settings shall only be altered following written agreement between the DNO and the Generator.		Р
10.1.6	In exceptional circumstances additional protection may be required by the DNO to protect the Distribution Network and its Customers from the Power Generating Module.		Р
10.1.7	Note that where the Generator installs an Export Limiting Scheme in accordance with EREC G100 the installation will also need to comply with the requirements of that EREC.		Р
10.2	Co-ordinating with DNO's Distribution Network's Exist	ting Protection	Р

Page 30 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
10.2.1	 It will be necessary for the protection associated with Power Generating Modules to co-ordinate with the Protection associated with the DNO's Distribution Network as follows: (a) For Power Generating Modules directly connecte to the DNO's Distribution Network the Power Generating Module must meet the target clearand times for fault current interchange with the DNO's Distribution Network in order to reduce to a minimum the impact on the DNO's Distribution Network of faults on circuits owned by the Generator. The DNO will ensure that the DNO protection settings meet its own target clearance times. 	ce	P
	The target clearance times are measured from fa current inception to arc extinction and will be specified by the DNO to meet the requirements o the relevant part of the Distribution Network.	f	
	(b) The settings of any protection controlling a circuit breaker or the operating values of any automatic switching device at any point of connection with the DNO's Distribution Network, as well as the Generator's maintenance and testing regime, sha be agreed between the DNO and the Generator i writing during the connection consultation process	he all n	
	It will be necessary for the Power Generating Module protection to co-ordinate with any auto-reclose policy specified by the DNO. In particular the Power Generat Module protection should detect a loss of mains situat and disconnect the Power Generating Module in a tim shorter than any auto reclose dead time. This should include an allowance for circuit breaker operation and generally a minimum of 0.5 s should be allowed for this For auto-reclosers set with a dead time of 3 s, this implies a maximum Interface Protection response time 2.5 s. Where auto-reclosers have a dead time of less than 3 s, there may be a need to reduce the operating time of the Interface Protection. For Type Tested Pow Park Modules no changes are required to the operating times irrespective of the auto-reclose times. In all othe cases where the auto-recloser dead time is less than 3 the Generator will need to agree site-specific Interface Protection settings with the DNO.	ion e is. e of er ng er 3 s	P
10.2.2	Specific protection required for Power Generating Modules		Р

Page 31 of 247

			2010111
	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	In addition to any protection installed by the Generator to meet his own requirements and statutory obligations on him, the Generator must install protection to achieve the following objectives:		Р
	 (a) For all Power Generating Modules: To disconnect the Power Generating Module from the system when a system abnormality occurs that results in an unacceptable deviation of the frequency or voltage at the Connection Point, recognizing the requirements to ride through faults as detailed in Sections 12.3 and 13.4; To ensure the automatic disconnection of the Power Generating Module, or where there is constant supervision of an installation, the operation of an alarm with an audio and visual indication, in the event of any failure of supplies to the protective equipment that would inhibit its correct operation. 		
	 (b) For polyphase Power Generating Modules: To inhibit connection of Power Generating Modules to the system unless all phases of the DNO's Distribution Network are present and within the agreed ranges of protection settings; To disconnect the Power Generating Module from the system in the event of the loss of one or more phases of the DNO's Distribution Network; 		P
	 (c) For single phase Power Generating Modules: i. To inhibit connection of Power Generating Modules to the system unless that phase of the DNO's Distribution Network is present and within the agreed ranges of protection settings; ii. To disconnect the Power Generating Module from the system in the event of the loss of that phase of the DNO's Distribution Network; 		N/A
10.3	Protection Requirements		Р
10.3.1	 Suitable protection arrangements and settings will depend upon the particular Generator installation and the requirements of the DNO's Distribution Network. These individual requirements must be ascertained in discussions with the DNO. To achieve the objectives above, the protection must include the detection of: Under Voltage (1 stage); Over Voltage (2 stage); Over Frequency (1 stage); Loss of Mains (LoM). 		P

	G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict		
	The LoM protection will depend for its operation on the detection of some suitable parameter, for example, rate of change of frequency (RoCoF), or unbalanced voltages. More details on LoM protection are given in Section 10.4.		Р		
10.3.2	The protective equipment, provided by the Generator, to meet the requirements of this section must be installed in a suitable location that affords visual inspection of the protection settings and trip indicators and is secure from interference by unauthorised personnel.		P		
10.3.3	Installation of automatic reconnection systems for Type B, Type C and Type D shall be subject to prior authorisation by the DNO. Unless Generators of Type D Power Generating Modules have prior authorisation from the DNO for the installation of automatic reconnection systems, they must obtain authorisation from the DNO, or NETSO as applicable, prior to synchronisation.	Type B, C, D Power Generating Modules	Р		
10.3.4	The frequency and voltage at the DNO's side of the supply terminals at the Connection Point must be within the frequency and voltage ranges of the Interface Protection as listed in paragraph 10.6.7 for at least 20 s before the Power Generating Module is allowed to automatically reconnect to the DNO's Distribution Network. There is in general no maximum admissible ramp rate for Active Power output on connecting or reconnecting, although it is a requirement to state the assumed maximum ramp rate for the Power Generating Module as part of the application for connection.		P		
10.3.5	If automatic resetting of the protective equipment is used, there must be a time delay to ensure that healthy supply conditions exist for a minimum continuous period of 20 s. Reset times may need to be co-ordinated where more than one Power Generating Module is connected to the same feeder. The automatic reset must be inhibited for faults on the Generator's Installation.		Р		
10.3.6	 Protection equipment is required to function correctly within the environment in which it is placed and shall satisfy the following standards: BS EN 61000 (Electromagnetic Standards); BS EN 60255 (Electrical Relays); BS EN 61810 (Electrical Elementary Relays); BS EN 60947 (Low Voltage Switchgear and Control gear); BS EN 61869 (Instrument Transformers; Additional requirements for current transformers). Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable. 		P		

Page 33 of 247

	Fage 55 01 247	Report No.: 013422		
G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict	
10.3.7	 Protection equipment and protection functions may be installed within, or form part of the Power Generating Module control equipment as long as: (a) the control equipment satisfies all the requirements of Section 10 including the relevant standards 		Ρ	
	 specified in paragraph 10.3.6; (b) the Power Generating Module shuts down in a controlled and safe manner should there be an equipment failure that affects both the protection and control functionality, for example a power supply failure or microprocessor failure; and 			
	 (c) (c) the equipment is designed and installed so that protection calibration and functional tests can be carried out easily and safely using secondary injection techniques (ie using separate Low Voltage test equipment). 			
10.3.8	The health of protection tripping and/or auxiliary supplies must be monitored such that any failure of these supplies is either brought to the immediate attention of the Generator via an automatic alarm that is monitored by the Generator in real time, or the failure of the protection tripping and/or auxiliary supplies causes the Power Generation Module to be tripped, and reconnection prevented before restoration of the protection tripping and/or auxiliary supplies that have been lost.		Ρ	
10.4	Loss of Mains (LoM)		Р	
10.4.1	To achieve the objectives of Section 10.1.1, in addition to protection installed by the Generator for his own purposes, the Generator must install protection to achieve (amongst other things) disconnection of the Power Generating Module from the Distribution Network in the event of loss of one or more phases of the DNOs supply.		Ρ	
10.4.2	LoM protection is required for all Type A, Type B and Type C Power Generating Modules. For Type D Power Generating Modules the DNO will advise if LoM protection is required. The requirements of paragraph 10.6.2 apply to LoM protection for all Power Generating Modules.		Ρ	
10.4.3	A problem can arise for Generators who operate a Power Generating Module in parallel with the Distribution Network prior to a failure of the network supply because if their Power Generating Module continues to operate in some manner, even for a relatively short period of time, there is a risk that when the network supply is restored the Power Generating Module will be out of Synchronism with the Total System and suffer damage. LoM protection can be employed to disconnect the Power Generating Module immediately after the supply is lost, thereby avoiding damage to the Power Generating Module.		Ρ	

Page 34 of 247

G99/1-8

G99/1-8			
Clause	Requirement - Test	Result - Remark	Verdict
10.4.4	Where the amount of Distribution Network load that the Power Generating Module will attempt to pick up following a fault on the Distribution Network is significantly more than its capability the Power Generating Module will rapidly disconnect, or stall. However, depending on the exact conditions at the time of the Distribution Network failure, there may or may no be a sufficient change of load on the Power Generating Module to be able to reliably detect the failure. The Distribution Network failure may result in one of the following load conditions being experienced by the Pow Generating Module: (a) The load may slightly increase or reduce, but remain	e ot ver	Ρ
	within the capability of the Power Generating Module. There may even be no change of load;		
	(b) The load may increase above the capability of the prime mover, in which case the Power Generating Module will slow down, even though the alternator may maintain voltage and current within its capaci This condition of speed/frequency reduction can b easily detected; or	ty.	
	(c) The load may increase to several times the capability of the Power Generating Module, in white case the following easily detectable conditions will occur:		
	Overload and accompanying speed/frequency reduction		
	Over current and under voltage on the alternator		
10.4.5	Conditions (b) and (c) are easily detected by the under and over voltage and frequency protection required in this document. However, condition (a) presents most difficulty, particularly if the load change is extremely sm and therefore there is a possibility that part of the Distribution Network supply being supplied by the Powe Generating Module will be out of Synchronism with the Total System. LoM protection is designed to detect the conditions.	all er	P
10.4.6	LoM signals can also be provided by means of intertripping signals from circuit breakers that have operated in response to the Distribution Network fault.		Ρ

Page 35 of 247

G99/1-8

	G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict		
10.4.7	The LoM protection can utilise one or a combination of the passive protection principles such as reverse Active Power flow, reverse Reactive Power and rate of change of frequency (RoCoF). Alternatively, active methods such as reactive export error detection or frequency shifting may be employed. These may be arranged to trip the interface circuit breaker at the DNO Generator interface, thus, leaving the Power Generating Module available to satisfy the load requirements of the site or the Power Generating Module circuit breaker can be tripped, leaving the breaker at the interface closed and ready to resume supply when the Distribution Network supply is restored. The most appropriate arrangement is subject to agreement between the DNO and Generator.	See appended table.	P		
10.4.8	Protection based on measurement of reverse flow of Active Power or Reactive Power can be used when circumstances permit and must be set to suit the Power Generating Module rating, the site load conditions and requirements for Reactive Power.		Р		
10.4.9	Where the Power Generating Facility capacity is such that the site will always import power from the Distribution Network, a reverse power relay may be used to detect failure of the supply. It will usually be appropriate to monitor all three phases for reverse power.		Р		
10.4.10	However, where the Power Generating Facilities normal mode of operation is to export power, it is not possible to use a reverse power relay and consequently failure of the supply cannot be detected by measurement of reverse power flow. The protection should then be specifically designed to detect loss of the mains connection using techniques to detect the rate of change of frequency and/or Power Factor. All these techniques are susceptible to Distribution Network conditions and the changes that occur without islanding taking place. These relays must be set to prevent islanding but with the best possible immunity to unwanted nuisance operation.		Ρ		
10.4.11	RoCoF relays use a measurement of the period of the mains voltage cycle. The RoCoF technique measures the rate of change in frequency caused by any difference between prime mover power and electrical output power of the Power Generating Module over a number of cycles. RoCoF relays should normally ignore the slow changes but respond to relatively rapid changes of frequency which occur when the Power Generating Module becomes disconnected from the Total System. The voltage vector shift technique is not an acceptable loss of mains protection.		Ρ		

Page 36 of 247

	G99/1-8		20.01 01.1
Clause	Requirement - Test	Result - Remark	Verdict
10.4.12	Should spurious tripping present a nuisance to the Generator, the cause must be jointly sought with the DNO. Raising settings on any relay to avoid spurious operation may reduce a relay's capability to detect islanding and it is important to evaluate fully such changes. Annex D.2 provides some guidance for assessments, which assume that during a short period of islanding the trapped load is unchanged. In some circumstances it may be necessary to employ a different technique, or a combination of techniques to satisfy the conflicting requirements of safety and avoidance of nuisance tripping. In those cases where the DNO requires LoM protection this must be provided by a means not susceptible to spurious or nuisance tripping, eg intertripping.		P
10.4.13	For a radial or simple Distribution Network controlled by circuit breakers that would clearly disconnect the entire circuit and associated Power Generating Module, for a LoM event an intertripping scheme can be easy to design and install. For meshed or ring Distribution Networks, it can be difficult to define which circuit breakers may need to be incorporated in an intertripping scheme to detect a LoM event and the inherent risks associated with a complex system should be considered alongside those associated with a using simple, but potentially less discriminatory LoM relay.		Ρ
10.4.14	It is the responsibility of the Generator to incorporate what they believe to be the most appropriate technique or combination of techniques to detect a LoM event in his protection systems. This will be based on knowledge of the Power Generating Module, site and network load conditions. The DNO will assist in the decision making process by providing information on the Distribution Network and its loads. The settings applied must be biased to ensure detection of islanding under all practical operating conditions.		Ρ
10.5	Additional DNO Protection		Р
10.5.1	 Following the DNO connection study, the risk presented to the Distribution Network by the connection of a Power Generating Module may require additional protection to be installed and may include the detection of: Neutral Voltage Displacement (NVD); Over Current; Earth Fault; 		Ρ
	Reverse Power.		
10.5.2	Neutral Voltage Displacement (NVD) Protection		N/A
10.6	Protection Settings	1	Р
10.6.1	The following notes aim to explain the settings requirements as given in Section 10.6.7 below.		Р
10.6.2	Loss of Mains	See appended table.	Р

TRF No. G99/1-8_V1.0

Page 37 of 247

G99/1	-8
-------	----

Clause	Requirement - Test	Result - Remark	Verdict
	A LoM protection of the RoCoF type will generally be appropriate for Type A, Type B and Type C Power Generating Modules, but this type of LoM protection must not be installed for Power Generating Facilities at or above 50 MW. In those cases where the DNO requires LoM protection this must be provided by a means not susceptible to spurious or nuisance tripping, eg intertripping.		Ρ
10.6.3	Under Voltage	See appended table.	Р
	In order to help maintain Total System Stability, the protection settings aim to facilitate transmission fault ride through capability (as required in Sections 12.3 and 13.3 below). The overall aim is to ensure that Power Generating Module is not disconnected from the Distribution Network unless there is material disturbance on the Distribution Network, as disconnecting generation unnecessarily will tend to make an under voltage situation worse. To maximize the transmission fault ride through capability a single undervoltage setting of - 20% with a time delay of 2.5 s should be applied.		P
10.6.4	Over Voltage	See appended table.	Р
	 Over voltages are potentially more dangerous than under voltages and hence the acceptable excursions from the norm are smaller and time delays shorter, a 2-Stage over voltage protection6 is to be applied as follows: Stage 1 (LV) should have a setting of +14% (ie the LV statutory upper voltage limit of +10%, with a further 4% permitted for voltage rise internal to the Generator's Installation and measurement errors), with a time delay of 1.0 s (to avoid nuisance tripping for short duration excursions); Stage 2 (LV) should have a setting of +19% with a 		Ρ
	time delay of 0.5 s (ie recognising the need to disconnect quickly for a material excursion);		
	• Stage 1 (HV) should have a setting of +10% with a time delay of 1.0 s (ie the HV statutory upper voltage limit of +6%, with a further 4% permitted for voltage rise internal to the Generator's Installation and measurement errors), with a time delay of 1.0 s to avoid nuisance tripping for short duration excursions);		Ρ
	• Stage 2 (HV) should have a setting of +13% with a time delay of 0.5 s (ie recognising the need to disconnect quickly for a material excursion).		

Page 38 of 247

(200/1_8						
G99/1-8						
Clause Requirement - Test Result - Remark	Verdict					
To achieve high utilisation and Distribution Network efficiency, it is common for the HV Distribution Network to be normally operated near to the upper statutory voltage limits. The presence of Power Generating Module within such Distribution Network may increase the risk of the statutory limit being exceeded, eg when the Distribution Network is operating abnormally. In such cases the DNO may specify additional over voltage protection at the Power Generating Module Connection Point. This protection will typically have an operating time delay long enough to permit the correction of transient over voltages by automatic tap-changers.	P					
10.6.5 Over Frequency	Р					
Power Generating Modules are required to stay connected to the Total System for frequencies up to 52 Hz for up to 15 minutes so as to provide the necessary regulation to control the Total System frequency to a satisfactory level. In order to prevent the unnecessary disconnection of a large volume of smaller Power Generating Module for all LV and HV connected Power Generating Module a single stage protection is to be applied that has a time delay of 0.5 s and a setting of 52 Hz. If the frequency rises to or above 52 Hz as the result of an undetected islanding condition, the Power Generating Module will be disconnected with a delay of 0.5 s plus circuit breaker operating time.	Ρ					
10.6.6 Under Frequency	Р					
 All Power Generating Facilities are required to maintain connection unless the Total System frequency falls below 47.5 Hz for 20 s or below 47 Hz. For all LV and HV connected Power Generating Module, the following 2-stage under frequency protection should be applied: Stage 1 should have a setting of 47.5 Hz with a time delay of 20 s; Stage 2 should have a setting of 47.0 Hz with a time delay of 0.5 s; 	Ρ					
10.6.7 Protection Settings	Р					

Page 39 of 247

	G99/1-8								
Clause	Requirement - Test						Result - Remark	Verdict	
10.6.7.1 Table 10.1 Settings for Long-Term Parallel Operation							Р		
10.0.7.1		-	pe A, Type	B and Type C I ating Modules		Type D Generating	g Modules		
		LV Prot	tection(1)	HV Pr	otection(1)	- and P Generating with a Re Capacity	Facilities gistered		
	Protection Function	Trip Setting	Time Delay Setting	Trip Setting	Time Delay Setting	Trip Setting	Time Delay Setting		
	U/V	Vφ-n† -20%	2.5 s*	Vφ-φ [‡] -20%	2.5 s*	Vφ-φ‡- 20%	2.5 s*		
	O/V st 1	Vφ-n† + 14%	1.0 s	Vφ-φ‡ + 10%	1.0 s	Vφ-φ [‡] + 10%	1.0 s		
	O/V st 2	Vφ-n†+ 19%\$	0.5 s	Vφ-φ [‡] + 13%	0.5 s				
	U/F st 1	47.5 Hz	20 s	47.5 Hz	20 s	47.5 Hz	20 s		
	U/F st 2	47.0 Hz	0.5 s	47.0 Hz	0.5 s	47.0 Hz	0.5 s		
	O/F	52.0 Hz	0.5 s	52.0 Hz	0.5 s	52.0 Hz	0.5 s		
	LoM (RoCoF) [#]	1 Hzs ⁻¹ time de	elay 0.5 s	1 Hzs ⁻¹ time	delay 0.5 s	Intertripping	g expected		
	according protection • If the El from an L Where a settings s indicated • If the El from an H †A value Generatin Distribution the O/V s setting is ‡A value Connectii * Might n (see 10.2 # Intertrip use of a L \$ For vol- present f Module is	to suit the on Point. eed to be	Itage a e is m protect then L n stan lculate n 10.6 protect then I shall b es con k ie th tting is e nomin reduce be co ater that of<0.9	at which t easuring, tion takes V setting dard LV i ed from H .14; tion takes HV setting e used in nected to e U/V LV 262.2 V nal voltag ed if auto nsidered an 230 V 5 s the Po duce/cea	he volt eg: s its vo s shall network IV setti s its vo gs shal all cas a DNC trip se and the -reclos as an a +19% over G se exp	age rela ltage refi be appli k exists t ngs valu ltage refi l be appl ses for P D's LV tting is 1 e O/V sta e HV e times a alternativ which ar eneratin	ted erence ed. the es as erence lied. ower 84 V, age 2 are <3 s. ve to the e g		Ρ

Page 40 of 247

G99/1-8			
	000		
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/1-X	

				G99/1-8			HZZ0.01V1.	
Clause	Requirement	- Test		033/1-0		Result - Remark	Verdict	
	The required in Hertz per s when the mea expressed in measured Ro must not trip of the threshold Setting the nu calculate the of the time de 500 ms if the the threshold.	econd (Hzs ⁻¹ asured RoCo Hzs ⁻¹ . The tir CoF falls beli unless the me expressed in imber of cycl RoCoF is not lay since the system RoCo). The tim F exceed ne delay s ow that th easured r Hzs ⁻¹ col es on the an accep relay wo	e delay sh s the thres should be irreshold. T ate remain ntinuously relay usec otable impl uld trip in le	ould begin hold reset if he relay s above for 500 ms. I to ementation ess than		P	
	(2) Note that the set on the operating time opening will be time delay set breakers, slow	appropriate r e from condit e of the orde ttings in the a	elays. To ion detect r of 100 n above tab	tal protecti tion to circu ns longer the le with most	on uit breaker nan the st circuit		P	
	The Manufact Protection in a capable of me the nominal vo of the nomina voltage, frequ	a Type Teste easuring volta alue and of n I value acros	d Power age to an neasuring s its oper	Generating accuracy o frequency ating range	Module is of $\pm 1.5\%$ of to $\pm 0.2\%$		P	
10.6.7.2	Table 10.2 – Set	tings for Infrequer	nt Short-Term	Parallel Opera	tion	Long-Term Parallel		
		Type A, Type B an	d Type C Powe	Operation.				
	Protection Function	LV Protection Trip Setting	Time Delay Setting	HV Protection Trip Setting	Time Delay Setting			
	U/V	Vφ-n [†] -10%	0.5 s	Vφ-φ‡ -6%	0.5 s			
	0/V	Vφ-n† + 14%	0.5 s	Vφ-φ‡ + 6%	0.5 s			
	U/F	49.5 Hz	0.5 s	49.5 Hz	0.5 s			
	O/F	50.5 Hz	0.5 s	50.5 Hz	0.5 s			
	†A value of 23 Generating Fa Distribution N and the O/V to ±A value to su	acilities connetwork (ie the rip setting is 2						
10.6.8	 ‡A value to suit the voltage of the HV Connection Point. Over and Under voltage protection must operate independently for all three phases in all cases. 					P		
10.6.9	Over and Under voltage protection must operate independently for all three phases in all cases. The settings in Table 10.1 should generally be applied to all Power Generating Modules. In exceptional circumstances Generators have the option to agree alternative settings with the DNO if there are valid justifications in that the Power Generating Module may become unstable or suffer damage with the settings specified in Table 10.1. The agreed settings should be recorded in the Connection Agreement.						Р	

Page 41 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
10.6.10	Once the settings of relays have been agreed between the Generator and the DNO they must not be altered without the written agreement of the DNO. Any revised settings should be recorded again in the amended Connection Agreement.		Ρ
10.6.11	The under/over voltage and frequency protection may be duplicated to protect the Power Generating Module when operating in island mode although different settings may be required.		Р
10.6.12	For LV connected Power Generating Modules the voltage settings will be based on the 230 V nominal system voltage. In some cases Power Generating Modules may be connected to LV systems with non-standard operating voltages. Paragraph 10.6.14 details how suitable settings can be calculated based upon the HV connected settings in Table 10.1. Note that Power Generating Modules with non-standard LV protection settings need to be agreed by the DNO on a case by case basis.		Ρ
10.6.13	Where an installation contains Power Factor correction equipment which has a variable susceptance controlled to meet the Reactive Power demands, the probability of sustained generation is increased. For LV installations, additional protective equipment provided by the Generator, is required as in the case of self-excited asynchronous machines.	No such equipment used.	N/A
10.6.14	Non-Standard private LV networks calculation of appropriate protection settings		N/A
10.6.15	The Generator shall provide a means of displaying the protection settings so that they can be inspected if required by the DNO to confirm that the correct settings have been applied. The Manufacturer needs to establish a secure way of displaying the settings in one of the following ways:		Ρ
	 (a) A display on a screen which can be read; (b) A display on an electronic device which can communicate with the Power Generating Module and confirm that it is the correct device by means of a Identification number / name permanently fixed to the device and visible on the electronic device screen at the same time as the settings; 		
	(c) Display of all settings including nominal voltage and current outputs, alongside the identification number / name of the device, permanently fixed to the Power Generating Module.		

Page 42 of 247

	G99/1-8	I			
Clause	Requirement - Test	Result - Remark	Verdict		
	The provision of loose documents, documents attached by cable ties etc., a statement that the device conforms with a standard, or provision of data on adhesive paper based products which are not likely to survive due to fading, or failure of the adhesive, for at least 20 years is not acceptable. The protection arrangements (including changes to protection arrangements) for individual schemes will be		Ρ		
	agreed between the Generator and the DNO in accordance with this document.				
10.6.16	Whilst the protection schemes and settings for internal electrical faults should mitigate any damage to the Power Generating Module they must not jeopardise the performance of a Power Generating Module, in line with the requirements set out in this EREC.		Ρ		
10.6.17	The Generator shall organise its protection and control devices in accordance with the following priority ranking (from highest to lowest) for Type B, Type C and Type D Power Generating Modules:		Ρ		
	(a) network and Power Generating Module protection;				
	(b) synthetic inertia, if applicable;				
	(c) frequency control (Active Power adjustment -if any);(d) power restriction (if any); and				
	(e) power gradient constraint (if any).				
10.6.18	For the avoidance of doubt where an internal fault on the Power Generating Module occurs during any significant event on the Total System, the Power Generating Module's internal protection should trip the module to ensure safety and minimise damage to the Power Generating Module.		Ρ		
10.7	Typical Protection Application Diagrams		Info.		
10.7.1	This Section provides some typical protection application diagrams in relation to parallel operation of Power Generating Modules within DNO Distribution Networks. The diagrams only relate to DNO requirements in respect of the connection to the Distribution Network and do not necessarily cover the safety of the Generator's Installation. The diagrams are intended to illustrate typical installations.		Info.		
11	TYPE A POWER GENERATING MODULE TECHNICAL REQUIREMENTS				
11.1	Power Generating Module Performance and Control Requirements – General	As Manufacturer declares, the test unit was Type B, C and D Power Generating Module.	N/A		
11.2	Frequency response				
11.3	Fault Ride Through and Phase Voltage Unbalance		N/A		
11.4	Voltage Limits and Control				
12	TYPE B POWER GENERATING MODULE TECHNICAL	REQUIREMENTS	Р		

Report No.: 6134228.51V1.1

Page 43 of 247

G99/1-8

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
12.1	Power Generating Module Performance and Control R	equirements - General	Р
12.1.2	The Active Power output of a Power Generating Module should not be affected by voltage changes within the statutory limits declared by the DNO in accordance with the ESQCR.		Р
12.1.3	Power Generating Modules shall be equipped with a communication interface (input port) in order to be able to reduce Active Power output following an instruction at the input port.		Р
12.1.4	The Power Generating Module and its associated control equipment shall be designed for stable operation in parallel with the Distribution Network.		Р
12.1.5	Load flow and System Stability studies may be necessary to determine any output constraints or post fault actions necessary for n-1 fault conditions and credible n-2 conditions (where n-1 and n-2 conditions are the first and second outage conditions as, for example, specified in EREC P2) involving a mixture of fault and planned outages. The Connection Agreement should include details of the relevant outage conditions. It may be necessary under these fault conditions, where the combination of Power Generating Module output, load and through flow levels leads to circuit overloading, to rapidly disconnect or constrain the Power Generating Module.		P
12.2	Frequency response		Р
12.2.1	Under abnormal conditions automatic low-frequency load-shedding provides for load reduction down to 47 Hz. In exceptional circumstances, the frequency of the DNO's Distribution Network could rise above 50.5 Hz. Therefore all Power Generating Modules should be capable of continuing to operate in parallel with the Distribution Network in accordance with the following:		Р
	 a) 47 Hz – 47.5 Hz Operation for a period of at least 20 s is required each time the frequency is within this range. b) 47.5 Hz – 49.0 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range. c) 49.0 Hz – 51.0 Hz Continuous operation of the Power Generating Module is required. d) 51.0 Hz –51.5 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range. e) 51.5 Hz – 52 Hz Operation for a period of at least 15 minutes is required each time the frequency is within this range. 	See appended table.	P

Page 44 of 247

	Page 44 of 247	Report No.: 61342	20.3101.
	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
12.2.2	With regard to the rate of change of frequency withstand capability, a Power Generating Module shall be capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻¹ as measured over a period of 500 ms unless disconnection was triggered by a rate of change of frequency type loss of mains protection or by the Power Generating Module's own protection system for a co-incident internal fault as detailed in paragraph 10.6.18.		Ρ
12.2.3	Output power with falling frequency		Р
12.2.3.1	Each Power Generating Module, must be capable of:		Р
	 a) continuously maintaining constant Active Power output for system frequency changes within the range 50.5 to 49.5 Hz; and 		Р
	 b) (subject to the provisions of paragraph 12.2.1) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure 12.1 for system frequency changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the system frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. 47.0 Frequency 48.8 49.5 50.5 100% of Active Power 		Ρ
12.2.3.2	For the avoidance of doubt in the case of a Power Generating Module using an Intermittent Power Source where the power input will not be constant over time, the requirement is that the Active Power output shall be independent of system frequency under (a) above and should not drop with system frequency by greater than the amount specified in (b) above.		Ρ

Page 45 of 247

G99/1-8

	G99/1-8	· .	
Clause	Requirement - Test	Result - Remark	Verdict
12.2.3.2	Electricity Storage Power Generation Modules can support the Total System by being arranged to automatically respond to falling frequency in line with the characteristic of Figure 12.2 until the stored energy is depleted.	Not Electricity Storage Power Generation Modules	N/A
	Hz Hz 47.0 47.5 48.0 48.3 48.5 49.0 49.5 Capacity Acceptable Response 1.0 Rated Import Capacity Interim Loading Points 1.0 Rated Import Capacity Import		
	Figure 12.2 Change in Active Power of Electricity Storage Device with falling frequency (not to scale)		
12.2.4	Limited Frequency Sensitive Mode – Over frequency		P
12.2.4.1	Each Power Generating Module shall be capable of reducing Active Power output in response to frequency on the Total System when this rises above 50.4 Hz. The Power Generating Module shall be capable of operating stably during LFSM-O operation. If a Power Generating Module has been contracted to operate in Frequency Sensitive Mode the requirements of LFSM-O shall apply when frequency exceeds 50.5 Hz.	See appended table.	P
	(a) The rate of change of Active Power output must be at a minimum a rate of 2% of output per 0.1 Hz deviation of system frequency above 50.4 Hz (ie a Droop of 10%) as shown in Figure 12.2. For the avoidance of doubt, this would not preclude a Generator from designing their Power Generating Module with a Droop of less than 10%, but in all cases the Droop should be 2% or greater.		Р
	(b) The Power Generating Module shall be capable of initiating a power frequency response with an initial delay that is as short as possible. If the initial delay exceeds 2 s the Generator shall justify the delay, providing technical evidence to the DNO, who will pass this evidence to the NETSO.		Р
	(c) For deviations in frequency up to 50.9 Hz at least half of the proportional reduction in Active Power output shall be achieved within 10 s of the time of the frequency increase above 50.4 Hz.		Р
	(d) For deviations in frequency beyond 50.9 Hz the measured rate of change of Active Power reduction shall exceed 0.5% s ⁻¹ of the initial output.		Р

	G99/1-8	Report No.: 61342	20.0171.1
Clause	Requirement - Test	Result - Remark	Verdict
	(e) The LFMS-O response shall be reduced when the frequency subsequently falls again and, when to a value less than 50.4 Hz, at least half the proportional increase in Active Power shall be achieved in 10 s. For a frequency excursion returning from beyond 50.9 Hz the measured rate of change Active Power increase shall exceed 0.5% s ⁻¹ .		P
	(f) If the reduction in Active Power is such that the Power Generation Module reaches its Minimum Stable Operating Level, it shall continue to operate stably at this level.		Ρ
	ΔP +0.5 +0.5 +0.5 +0.5 +0.5 50.5 51.5 52 -0.5 -1 10% droop +1 -0.5 -1 -1 2% droop +1 -1 -1 -1 -1 -2% droop +1 -1 -1 -1 -2% droop +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2% droop -1 -1 -1 -2% droop -1 -1 -1 -1 -1 -1 -1 -2% droop <t< td=""><td></td><td>Ρ</td></t<>		Ρ
12.2.4.2	When the Power Generating Module is providing Limited Frequency Sensitive Mode Over frequency (LFSM-O) response it must continue to provide the frequency response until the frequency has returned to, or is below, 50.4 Hz.		Ρ
12.2.4.3	Steady state operation below Minimum Stable Operating Level is not expected but if system operating conditions cause operation below Minimum Stable Operating Level which give rise to operational difficulties then the Generator shall be able to return the output of the Power Generating Module to an output of not less than the Minimum Stable Operating Level.		Ρ
12.3	Fault Ride Through and Phase Voltage Unbalance		Р
12.3.1	Paragraphs 12.3.1.1 to 12.3.1.7 inclusive set out the Fault Ride Through, principles and concepts applicable to Synchronous Power Generating Modules and Power Park Modules, subject to disturbances from faults on the Network up to 140 ms in duration.		Ρ
12.3.1.1	Each Synchronous Power Generating Module and Power Park Module is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Connection Point remains on or above the heavy black line shown in Figures 12.3 and 12.4 below.		Ρ

Page 47 of 247

				Faye 47				01220101111
	1			G99	9/1-8			
Clause	Require	ement - Test					Result - Remark	Verdict
12.3.1.2	and Ta ratio of actual of to earth faults) Point d	Itage against ble 12.2 expre- its actual value course of the n voltage in the on the networ uring a symm s a function of	ess the lowe ue and its re phase to phase to phase case of as k voltage lev etrical or as	er limit (exp ference 1p ase voltag symmetrica vel at the 0 ymmetrica	pressed as pu) of the jes (or phas al/unbalanc Connection al/unbalance	the se sed ed		P
12.3.1.3	Voltage 1.0 0.9 (Urec2) 0.7 (Urec1) 0.3 (Uret) 0.0 Figur	tionPoint (p.u)			(trecs)	≁ ne(s)		N/A
12.3.1.4		2.1 Voltage aga onous Power G Voltage pa (p	enerating Mod	lules Time pa	licable to Typ arameters (s)	e B		N/A
		U _{ret}	0.3	t _{clear}	0.14			
		U _{clear}	0.7	t _{rec1}	0.14			
		U _{rec1}	0.7	t _{rec2}	0.45			
		U _{rec2}	0.9	trec3	1.5			

Page 48 of 247

			G	99/1-8		
Clause	Requirement - Te	est			Result - Remark	Verdict
12.3.1.5	Connection Point Voltage (p.u) 1.00 0.90 0.95 (Urec2) 0.10 (Uret) (Uret) (Uret) (Uret) (Uret) (Urec1) (trec2) Figure 12.5 - Voltage Modules	2.20 (trec: against time curv	3)	┼──→ Time (s)	rk	P
12.3.1.6	Table 12.2 Voltage a Park Modules				er	Р
	U _{ret}	oarameters (pu)	Time p	0.14		
	Uclear	0.10	trec1	0.14		
	U _{reo1}	0.10	t _{reo2}	0.14		
	U _{reo2}	0.85	t _{rec} 3	2.2		
12.3.1.7	In addition to the	requirements	s in 12.3.1.	2 to 12.3.1.6:		P
	satisfying th Point when and maximu paragraph 1 (b) The pre-faul	e above requ operating at F im leading Po 2.5.1. t voltage shal	irements at Registered ower Factor Il be taken	all be capable of t the Connection Capacity output r as specified in to be 1.0 pu ar as than 0.9 pu.	on ut n nd	P
	(c) The DNO w maximum de Developmer model the F Power Gene generic fault Where nece will specify t capacity (in provide addi	ill publish faul emand condit ault Ride Thro erating Module : level values ssary, on rea he pre-fault a MVA) at the 0	It level data ions in the . To allow a ough perfor es, the DNa derived fro sonable re and post fau Connection k data as n	a under Long Term a Generator to rmance of its O will provide om typical case quest the DNC ult short circuit Point and will nay reasonably	s.)	P

Page 49 of 247

	G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict		
	 (d) The protection schemes and settings for internal electrical faults shall not jeopardise Fault Ride Through performance as specified in Section 12.3. For the avoidance of doubt where an internal fault on the Power Generating Module occurs during a Fault Ride Through condition, the Power Generating Module's internal protection should trip the module to ensure safety and minimise damage. 		Ρ		
	 (e) Each Power Generating Module shall be designed such that within 0.5 s of restoration of the voltage at the Connection Point to 90% of nominal voltage or greater, Active Power output shall be restored to at least 90% of the level immediately before the fault. Once Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that: 		Ρ		
	 i. The total active energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant. ii. The oscillations are adequately damped. iii. In the event of power oscillations, Power Generating Modules shall retain steady state stability when operating at any point on the Generator Performance Chart. 		Ρ		
	For Power Park Modules, comprising switched reactive compensation equipment (such as mechanically switched capacitors and reactors), such switched reactive compensation equipment shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.		Ρ		
12.3.2	In addition to paragraphs 12.3.1.1 – 12.3.1.7, where it has been specifically agreed between the DNO and the Generator that a Power Generating Facility will contribute to the DNO's Distribution Network security (eg for compliance with EREC P2) the Power Generating Module(s) may be required to withstand, without tripping, the effects of a close up three phase fault and the Phase (Voltage) Unbalance imposed during the clearance of a close-up phase-to-phase fault, in both cases cleared by the DNO's main protection. The DNO will advise the Generator in each case of the likely tripping time of the DNO's protection, and for phase-phase faults, the likely value of Phase (Voltage) Unbalance during the fault clearance time		Ρ		
12.3.3	In the case of phase to phase faults on the DNO's Distribution Network that are cleared by system back-up protection which will be within the plant short time rating on the DNO's Distribution Network the DNO, on request during the connection process, will advise the Generator of the expected Phase (Voltage) Unbalance.		Ρ		
12.3.4	Other Fault Ride Through Requirements		N/A		

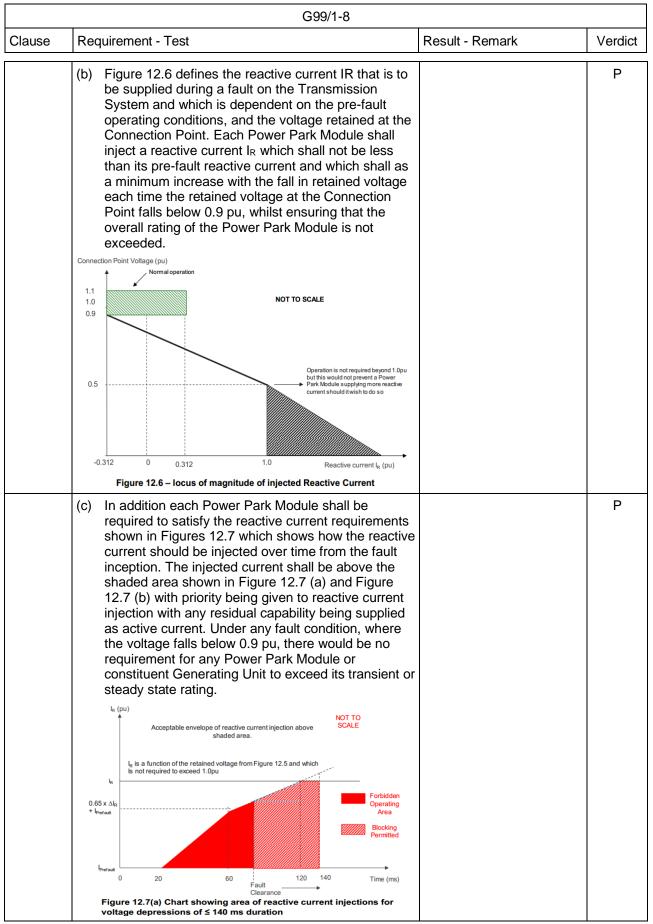
Page 50 of 247

G99/1-8

	G99/1-8					
Clause	Requirement - Test	Result - Remark	Verdict			
	(a) In the case of a Power Park Module, the requirements in this Section 12.3. do not apply when the Power Park Module is operating at less than 5% of its Registered Capacity or during very high primary energy source conditions when more than 50% of the Generating Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect Generator's plant and apparatus.		N/A			
	(b) For the avoidance of doubt the requirements specified in this Section 12.3 do not apply to Power Generating Modules connected to an unhealthy circuit and islanded from the Distribution Network even for delayed auto reclosure times.		N/A			
12.4	Voltage Limits and Control		Р			
12.4.1	Where a Power Generating Module is remote from a Network voltage control point it may be required to withstand voltages outside the normal statutory limits. In these circumstances, the DNO should agree with the Generator the declared voltage and voltage range at the Connection Point. Immunity of the Power Generating Module to voltage changes of \pm 10% of the declared voltage is recommended, subject to design appraisal of individual installations.		Ρ			
12.4.2	The connection of a Power Generating Module to the Distribution Network shall be designed in such a way that operation of the Power Generating Module does not adversely affect the voltage profile of and voltage control employed on the Distribution Network. ETR 126 provides DNOs with guidance on active management solutions to overcome voltage control limitations. Information on the voltage regulation and control arrangements will be made available by the DNO if requested by the Generator.		P			
12.4.3	Excitation Performance Requirements		N/A			
12.4.3.1	Each Synchronous Generating Unit within a Synchronous Power Generating Module shall be equipped with a permanent automatic Excitation System that has the capability to provide constant terminal voltage (assuming a high enough Network source impedance to allow the Power Generating Module to achieve this while remaining within its ratings) at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.		N/A			

Page 51 of 247

G99/1	-8
-------	----


	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
12.4.3.2	The DNO will agree with the Generator the operation of the control system of the Synchronous Power Generating Module or Power Park Module such that it shall contribute, as agreed, to voltage control or Reactive Power control or Power Factor control at the Connection Point. In some cases, for example, on large industrial sites etc where the Power Generating Module is embedded in the Generator's Installation, the DNO and Generator might agree a different control point, such as the Power Generating Module's terminals. The performance requirements of the control system including Slope (where applicable) shall be agreed between the DNO and the Generator.		Ρ
12.4.3.3	As part of the connection application process the Generator shall agree with the DNO the set points of the control scheme for voltage control, Power Factor control or Reactive Power control as appropriate. These settings, and any changes to these settings, shall be agreed with the DNO and recorded in the Connection Agreement. The information to be provided is detailed in Schedule 5a and Schedule 5b of the Data Registration Code.		Ρ
12.4.4	The final responsibility for control of Distribution Network voltage does however remain with the DNO.		Р
12.4.5	Automatic Voltage Control (AVC) schemes employed by the DNO often assume that power flows from parts of the Distribution Network operating at a higher voltage to parts of the Distribution Network operating at lower voltages. Export from Power Generating Modules in excess of the local loads may result in power flows in the reverse direction. In this case AVC referenced to the Low Voltage side may not operate correctly without an import of Reactive Power and relay settings appropriate to this operating condition. When load current compounding is used with the AVC and the penetration level of Power Generating Modules becomes significant compared to normal loads, it may be necessary to switch any compounding out of service.		Ρ
12.4.6	Power Generating Modules can cause problems if connected to networks employing AVC schemes which use negative reactance compounding and line drop compensation due to changes in Active Power and Reactive Power flows. ETR 126 provides guidance on connecting generation to such networks using techniques such as removing the generation circuit from the AVC scheme using cancellation CTs.		Ρ
12.5	Reactive Capability		Р

Page 52 of 247

G99/1-8

	G99/1-8	·	
Clause	Requirement - Test	Result - Remark	Verdict
12.5.1	When supplying Registered Capacity all Power Generating Modules shall be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Connection Point or the Generating Unit terminals as appropriate for the Power Generating Facility and as agreed with the DNO.		Ρ
12.5.2	At Active Power output levels other than Registered Capacity, all Synchronous Power Generating Modules or Generating Units within a Power Park Module shall be capable of continuous operation at any point between the Reactive Power capability limits identified on the Generator Performance Chart. Generators should take any site demand such as auxiliary supplies and the Active Power and Reactive Power losses of the Power Generating Module transformer or Station Transformer into account unless advised otherwise by the DNO.		Ρ
12.5.3	Where the Power Generating Module is contained within a Customer's Installation comprising both demand and generation the DNO will advise the Generator if it is more appropriate for the Power Factor requirements to be specified at the Power Generating Module terminals, rather than at the Connection Point. Any specific Power Factor requirements will be documented in the Connection Agreement.		Ρ
12.6	Fast Fault Current Injection		Р
12.6.1	Fast Fault Current injection is necessary to support the Total System during a fault on the Transmission System. The design of Fast Fault Current injection is tailored to this, and does not relate directly to faults on the Distribution Network, not least as those will tend to have longer clearing times than those of the Transmission System for which Fast Fault Current injection is designed. In this Section 12.6 the faults referred to are Transmission System faults which clear within 140 ms and which will be seen in the Distribution Network as a voltage depression. For this section 12.6 voltage and current quantities are assumed to be positive phase sequence values.		Ρ
12.6.2	Each Power Park Module shall be required to satisfy the following requirements:		Р
	(a) For any balanced fault on the Transmission System which results in the voltage at the Connection Point falling below 0.9 pu each Power Park Module shall, unless otherwise agreed with the DNO, be required to inject a reactive current IR that lies above the heavy black line shown in Figure 12.6.		Ρ

Page 53 of 247

Page 54 of 247

G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict	
	Figure 12.7(b) Chart showing area of Reactive Current injections for voltage depressions of > 140 ms duration	r	Ρ	
	 (d) For the purposes of this requirement, the maximum rated current is taken to be the maximum current each Generating Unit can supply when operating at Registered Capacity and 0.95 Power Factor at a nominal voltage of 1.0 pu. 		Р	
	(e) All Power Park Module equipment shall be designe to ensure a smooth transition between any of its voltage, power factor or reactive control modes and fault ride through mode in order to prevent the risk instability which could arise in the transition betwee the steady state voltage operating range and abnormal conditions where the retained voltage fall below 0.90 pu of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the Power Park Module and its subsequent behaviour under fault conditions.	d of n	Ρ	
	 (f) Each Power Park Module shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. Generators shall be permitted to block or employ other means where the anticipated transient over voltage would otherwise exceed the 1.05 pu of nominal. Figures 12.7 (a) and Figure 12. (b) show the impact of variations in fault clearance time which shall be no greater than 140 ms. The DNO may agree requirements for the maximum transient over voltage withstand capability and associated time duration. Such capability and parameters will be recorded in the Connection Agreement. Where the Generator is able to demonstrate to the DNO that blocking or other control strategies are required in order to prevent the risk of transient over voltage excursions Generators are required to both advise and agree with the DNO the control strategy, which must also include the approach taken to de-blocking. 	7	Ρ	

Report No.: 6134228.51V1.1

Page 55 of 247

G99/1-8	
---------	--

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	(g) To permit additional flexibility for example from Power Park Modules made up of full converter Generating Units, DFIG Generating Units or induction Generating Units, the DNO will permit transient deviations below the shaded area shown in Figures 12.7 (a) or Figure 12.7 (b) provided that the overall reactive current supplied over time is greater than the minimum requirement shown in Figures 12.7 (a) or Figure 12.7 (b). This agreement will be formalised in the Connection Agreement.		P
	 (h) In the case of an unbalanced fault, each Park Module or each Generating Unit within a Power Park Module shall be required to inject maximum reactive current without exceeding the transient rating of the Power Park Module (or constituent element thereof). 		Р
12.7	Operational monitoring		Р
12.7.1	At each Power Generating Facility the DNO will install its own Telecontrol/SCADA outstation which will generally meet all the DNO's necessary and legal operational data requirements. The DNO will inform the Generator if additional specific data are required.		Р
13	TYPE C AND TYPE D POWER GENERATING MODULE REQUIREMENTS	TECHNICAL	Р
13.1	Power Generating Module Performance and Control R	equirements	Р
13.1.1	 The requirements of this Section 13 do not apply in full to: (a) Power Generation Facilities that are designed and installed for infrequent short-term parallel operation 		Info.
	 (b) Electricity Storage Power Generation Modules within the Power Generating Facility commissioned before 01 September 2022. 		
13.1.2	The Active Power output of a Power Generating Module should not be affected by voltage changes within the statutory limits declared by the DNO in accordance with the ESQCR.		Р
13.1.3	Power Generating Modules shall be capable of adjusting the Active Power setpoint in accordance with instructions issued by the DNO.		Р
13.1.4	Any changes to the Active Power or voltage/Reactive Power control setpoints shall result in the Power Generating Module achieving the new Active Power or voltage/Reactive Power output, as appropriate, within 2 minutes.		Р
13.1.5	Each item of a Power Generating Module and its associated control equipment shall be designed for stable operation in parallel with the Distribution Network.		Р

Page 56 of 247

G99/1-8	3
---------	---

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.1.6	Load flow and System Stability studies may be necessary to determine any output constraints or post fault actions necessary for n-1 fault conditions and credible n-2 conditions (where n-1 and n-2 conditions are the first and second outage conditions as, for example, specified in EREC P2) involving a mixture of fault and planned outages. The Connection Agreement should include details of the relevant outage conditions. It may be necessary under these fault conditions, where the combination of Power Generating Module output, load and through flow levels leads to circuit overloading, to rapidly disconnect or constrain the Power Generating Module.		P
13.2	Frequency response		Р
13.2.1	Under abnormal conditions automatic low-frequency load-shedding provides for load reduction down to 47 Hz. In exceptional circumstances, the frequency of the DNO's Distribution Network could rise above 50.5 Hz. Therefore all Power Generating Modules should be capable of continuing to operate in parallel with the Distribution Network in accordance with the following:		Р
	 (a) 47 Hz – 47.5 Hz Operation for a period of at least 20 s is required each time the frequency is within this range. (b) 47.5 Hz – 49.0 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range. (c) 49.0 Hz – 51.0 Hz Continuous operation of the Power Generating Module is required. (d) 51.0 Hz –51.5 Hz Operation for a period of at least 90 minutes is required each time the frequency is within this range. (e) 51.5 Hz – 52 Hz Operation for a period of at least 15 minutes is required each time the frequency is within this range. 	See appended table.	P
13.2.2	With regard to the rate of change of frequency withstand capability, a Power Generating Module shall be capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻¹ as measured over a period of 500 ms unless disconnection was triggered by a rate of change of frequency type loss of mains protection or by the Power Generating Module's own protection system for a co-incident internal fault as detailed in paragraph 10.6.18.		P
13.2.3	Output power with falling frequency	See appended table.	Р
13.2.3.1	Each Power Generating Module, must be capable of:		Р
	 (a) continuously maintaining constant Active Power output for system frequency changes within the range 50.5 to 49.5 Hz; and 		Р

Page 57 of 247

	Page 57 of 247	Report No.: 61	34220.3101.1
	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	 (b) (subject to the provisions of paragraph 13.2.1) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure 13.1 for system frequency changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the system frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. 		Ρ
	47.0 Frequency 48.8 49.5 50.5 100% of Active Power For CCGT Module for a minimum of 5 minutes Figure 13.1 Change in Active Power with falling frequency		
13.2.3.2	For the avoidance of doubt in the case of a Power Generating Module using an Intermittent Power Source where the power input will not be constant over time, the requirement is that the Active Power output shall be independent of system frequency under (a) above and should not drop with system frequency by greater than the amount specified in (b) above.		P
13.2.3.3	Electricity Storage Power Generation Modules can support the Total System by being arranged to automatically respond to falling frequency in line with the characteristic of Figure 13.2 until the stored energy is depleted.		N/A
	frequency (not to scale)		
13.2.4	Limited Frequency Sensitive Mode – Over frequency		Р

Page 58 of 247

	G99/1-8	10 0134220.31 01.1
Clause	Requirement - Test Result - Remark	Verdict
13.2.4.1	Each Power Generating Module shall be capable of reducing Active Power output in response to frequency on the Total System when this rises above 50.4 Hz. The Power Generating Module shall be capable of operating stably during LFSM-O operation. If a Power Generating Module has been contracted to operate in Frequency Sensitive Mode the requirements of LFSM-O shall apply when frequency exceeds 50.5 Hz.	P
	 (a) The rate of change of Active Power output shall be at a minimum a rate of 2% of output per 0.1 Hz deviation of system frequency above 50.4 Hz (ie a Droop of 10%) as shown in Figure 13.3. For the avoidance of doubt, this would not preclude a Generator from designing the Power Generating Module with a Droop of less than 10%, (for example between 3 – 5%), but in all cases the Droop should be 2% or greater. 	ole. P
	49.5 • P _{ref} is the Registered Capacity (taking into account any Generating Units not in service) 49.5 50.5 51 51.5 52 52.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	P
	 (b) The reduction in Active Power output shall be continuously and linearly proportional, as far as is practicable, to the excess of frequency above 50.4 Hz and shall be provided increasingly with time over the period specified in (c) below. 	P
	 (c) As much as possible of the proportional reduction in Active Power output shall result from the frequency control device (or speed governor) action and shall be achieved within 10 s of the time of the frequency increase above 50.4 Hz. The Power Generating Module shall be capable of initiating a power frequency response with an initial delay that is as short as possible. If the delay exceeds 2 s the Generator shall justify the delay, providing technical evidence to the DNO, who will pass this evidence to the NETSO. 	P
13.2.4.2	When the Power Generating Module is providing Limited Frequency Sensitive Mode Over frequency (LFSM-O) response it must continue to provide the frequency response until the frequency has returned to or below 50.4 Hz.	P

Page 59 of 247

	Page 59 of 247	Report No.: 61342	28.51V1.1
	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.2.4.3	Steady state operation below Minimum Stable Operating Level is not expected but if system operating conditions cause operation below Minimum Stable Operating Level which give rise to operational difficulties then the Generator shall be able to return the output of the Power Generating Module to an output of not less than the Minimum Stable Operating Level.		Ρ
13.2.5	Limited Frequency Sensitive Mode – Under frequency (LFSM-U)		Р
13.2.5.1	Each Power Generating Module shall be capable of increasing Active Power output in response to system frequency when this falls below 49.5 Hz. it is not anticipated Power Generating Modules are operated in an inefficient mode to facilitate delivery of LFSM-U response, but any inherent capability should be made available without undue delay. The Power Generating Module shall be capable of stable operation during LFSM-U Mode.	See appended table.	Ρ
	 (a) The rate of change of Active Power output shall be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of system frequency below 49.5 Hz (ie a Droop of 10%) as shown in Figure 13.4 below. This requirement only applies if the Power Generating Module has headroom and the ability to increase Active Power output. In the case of a Power Park Module the requirements of Figure 13.4 shall be reduced pro-rata to the amount of Generating Units in service and available to generate. For example, for a Power Park Module with a Registered Capacity of 40 MW but with only 80% of the Generating Units in service Pref would be 32 MW. For the avoidance of doubt, this would not preclude a Generator from designing the Power Generating Module with a lower Droop setting, for example between 3 – 5%. 		Ρ

TRF No. G99/1-8_V1.0

Page 60 of 247

G99/1-8

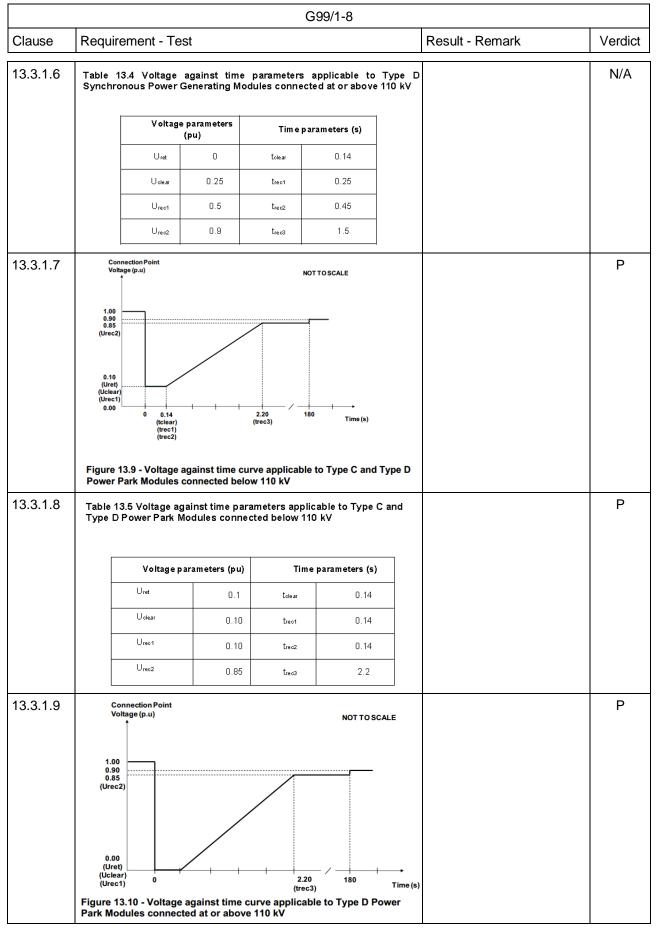
	G99/1-8							
Clause	Requirement - Test Result - Remark							
	(b) As much as possible of the proportional increase in Active Power output shall result from the frequency control device (or speed governor) action and shall be achieved for frequencies below 49.5 Hz. The Power Generating Module shall be capable of initiating a power frequency response with minimal delay. If the delay exceeds 2 s the Generator shall justify the delay, providing technical evidence to the DNO who will pass this evidence to the NETSO.		Ρ					
	 (c) The actual delivery of Active Power Frequency Response in LFSM-U mode shall take into account The ambient conditions when the response is to be triggered. The operating conditions of the Power Generating Module. In particular limitations on operation near Registered Capacity at low frequencies. The availability of primary energy sources. 	,	Ρ					
	(d) In LFSM-U Mode the Power Generating Module shall be capable of providing a power increase up to its Registered Capacity (based on the number of Generating Units in service at that point in time).		Ρ					
13.2.6	Frequency Sensitive Mode – (FSM)		Р					
13.2.6.1	Each Power Generating Module will be capable of FSM in addition to LFSM-O and LFSM-U. By default Power Generating Modules will be set to operate in LFSM, unless the Generator has a specific contract with the NETSO to operate in FSM.		Ρ					
13.2.6.2	The frequency control device (or speed governor) in co- ordination with other control devices shall t control each Power Generating Module Active Power output with stability over the entire operating range of the Power Generating Module; and		Ρ					
13.2.6.3	Power Generating Modules shall also meet the following minimum requirements:		Ρ					

Page 61 of 247

Clause Requirement - Test Result - Remark Verdict (a) Power Generating Modules shall be capable of providing Active Power Frequency Response in accordance with the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. P Image: the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. P Image: the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the performance characteristic shown in Figure 13.5 and parameters in the performance characteristic shown in Figure 13.5 and parameters for Active Power Generating Modules and Power Park Modules Figure 13.5 - Frequency Response in Frequency Response in Frequency Sensitivity Mode including the mathematical expressions in Figure 13.5 P Image: the period shown in the figure 13.5 - Prequency Response for Active Power as a percentage of Registered Capacity (the period shown in Figure 13.5 - Figur		G99/1-	8		
providing Active Power Frequency Response in accordance with the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the second accordance with the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the second accordance with the performance characteristic shown in Figure 13.5 and parameters in Table 13.1. Image: the second accordance with the performance characteristic shown in Figure 13.5 and parameters (accordance characteristic characteristic characteristic characteristic shown in Second and the second	Clause	Requirement - Test	Result - Remark	Verdict	
Frequency Sensitivity Mode including the mathematical expressions in Figure 13.5 Parameter Setting Nominal system frequency 50 Hz Active Power as a percentage of Registered Capacity ($\frac{ldP_1}{P_{max}}$) 10% Frequency Response Insensitivity in mHz ($l\Delta f_i l$) ±15mHz Frequency ($\frac{dAf_1 l}{f_n}$) ±0.03%		providing Active Power Frequency Respiration accordance with the performance characters in shown in Figure 13.5 and parameters in	onse in teristic Table 13.1.		P
Nominal system frequency 50 Hz Active Power as a percentage of Registered Capacity $\binom{ dP_1 }{P_{max}}$ 10% Frequency Response Insensitivity in mHz ($l\Delta f_i l$) ±15mHz Frequency Response Insensitivity as a percentage of nominal frequency $\binom{ \Delta f_i }{f_n}$ ±0.03%		Frequency Sensitivity Mode including the mathematical en			Р
Active Power as a percentage of Registered Capacity $\binom{ldP_1!}{P_{max}}$ 10% Frequency Response Insensitivity in mHz ($l\Delta f_i!$) ±15mHz Frequency Response Insensitivity as a percentage of nominal frequency $\binom{l\Delta f_i!}{f_n}$ ±0.03%		Parameter	Setting		
Frequency Response Insensitivity in mHz ($l\Delta f_i l$) ±15mHz Frequency Response Insensitivity as a percentage of nominal frequency $\binom{l\Delta f_i l}{f_n}$ ±0.03%		Nominal system frequency	50 Hz		
Frequency Response Insensitivity as a percentage of nominal frequency $\binom{ \Delta f_i }{f_n}$ ±0.03%		Active Power as a percentage of Registered Capacity $\binom{ dP_1 }{p_{max}}$	10%		
frequency $\left(\frac{ \Delta f ^2}{f_n}\right)$ ±0.03%		Frequency Response Insensitivity in mHz ($I\Delta f_t$ I)	±15mHz		
Frequency Response Deadband in mHz 0 (mHz)			±0.03%		
		Frequency Response Deadband in mHz	0 (mHz)		
Droop (%) 3 – 5%		Droop (%)	3 – 5%		

Page 62 of 247

	Page 62 of 247	Report No.: 6134228.51V1.
	G99/1-8	
Clause	Requirement - Test	Result - Remark Verdict
	 (b) In satisfying the performance requirements specifin paragraph 13.2.6.2 Generators in respect of ear Power Generating Module should be aware: i. in the case of overfrequency, the Active Power Frequency Response is limited by the Minimu Stable Operating Level, ii. in the case of underfrequency, the Active Power Frequency Response is limited by the Registered Capacity, iii. the actual delivery of Active Power Frequency Response depends on the operating and ambient conditions of the Power Generating Module when this response is triggered, in particular limitations on operation near Registered Capacity at low frequencies as specified in 13.2.5 and available primary energovernor) shall also be capable of being set as that it operates with an overall speed Droop of between 3 – 5%. The Frequency Response Deadband and Droop shall be able to be reserved at any time and as required by the DNO. For avoidance of doubt, in the case of a Power Pamotent and the speed Droop should be equivaler of a fixed setting between 3% and 5% applied 	ach er um wer y y rgy so of et the ark ht
	 each Generating Unit in service. (c) In the event of a frequency step change, each Power Generating Module shall be capable of activating full and stable Active Power Frequency Response (without undue power oscillations), in accordance with the performance characteristic shown in Figure 13.6 and parameters in Table 13 	b.2.


Page 63 of 247

	G99/1-	8		
Clause	Requirement - Test	Result - Remark	Verdict	
	Table 13.2 – Parameters for full activation of Active Por Response resulting from a frequency step change	wer Frequency		Р
	Parameter	Setting		
	Active power as a percentage of Registered Capacity (frequency response range) $\binom{\lfloor dP_1 \rfloor}{P_{max}}$			
	Maximum admissible initial delay t ₁ for Power Generating Modules with inertia unless justified as specified in 13.2.6.4(d)			
	Maximum admissible initial delay t_1 for Power Generating Modules which do not contribute to system inertia unless justified as specified in 13.2.6.4(d)	1 s		
	Activation time t ₂	10 s		
	Table 13.2 also includes the mathematical expressions used in Fi	gure 13.6.		
	(d) The initial activation of Active Power prim frequency response shall not be unduly of Power Generating Modules with inertia the initial Active Power Frequency Response be greater than 2 s. For Power Generatin without inertia the delay in initial Active P Frequency Response shall not be greated the Generator cannot meet this requirem Generator shall provide technical evidence DNO, who will pass this evidence to the demonstrating why a longer time is need initial activation of Active Power Frequen Response.	delayed. For ne delay in e shall not ng Modules ower r than 1 s. If ent the ce to the NETSO, ed for the		P
	(e) with regard to disconnection due to under Generators responsible for Power Gener Modules capable of acting as a load, incline not limited to pumped-storage Power Ge Modules, shall be capable of disconnecti load in case of underfrequency which will with the DNO. For the avoidance of doub requirement does not apply to station aux supplies.	ating uding but nerating ng their I be agreed t this		Ρ
	(f) In addition to the requirements of Section each Power Generating Module shall be meeting the minimum frequency respons requirement profile subject to and in acco with the provisions of Annex C.10.	capable of e		Р
13.3	Fault Ride Through		Р	
13.3.1	Paragraphs 13.3.1.1 to 13.3.1.10 inclusive se Fault Ride Through, principles and concepts a to Synchronous Power Generating Modules a Park Modules, subject to disturbances from fa Network up to 140 ms in duration.	applicable nd Power		Ρ
13.3.1.1	Each Synchronous Power Generating Module Park Module is required to remain connected for any balanced and unbalanced fault where at the Connection Point remains on or above black line shown in Figures 13.7 to 13.10 belo	and stable the voltage the heavy		Ρ

Page 64 of 247

				G99/1-8		0134220.3101.1
Clause	Requirement - Test	:		000/10	Result - Remark	Verdict
13.3.1.2	The voltage agains Table 13.6 express ratio of its actual va actual course of the to earth voltage in t faults) on the netwo during a symmetric as a function of tim	es the low alue and its phase to the case of ork voltage al or asym	er limit (e s referenc phase vo f asymme level at (metrical/u	expressed as the e 1 pu) of the ltages (or phas etrical/unbalance Connection Poir unbalanced faul	e ed nt	P
13.3.1.3	Connection Point Voltage (p.u) 1.0 0.9 (Urec2) 0.7 (Uclear) (Urec1) 0.1 (Urec1) 0.14 (tclear) (trec1) Figure 13.7 Voltage aga Synchronous Power Ge	enerating Mod	ameters app	cted below 110 kV	ind D	N/A
	Voltage pa (p) Uret Uret Urec1 Urec2	aram eters		arameters (s) 0.14 0.14 0.45 1.5		
13.3.1.5	Connection Point Voltage (p.u) 1.00 0.90 (Urec2) 0.50 (Urec1) 0.00 (Uret) 0.025 (Uclear) 0.00 (Uret) 0.25 (trec1)	0.45) (trec2)		NOT TO SCALE		N/A

Page 65 of 247

Page 66 of 247

					G99/1-8	}		
Clause	Rec	quirement -	Test				Result - Remark	Verdict
13.3.1.10		ole 13.6 Voltag rk Modules cor			rs applicable to kV	Type D Power		Р
			aram eters ou)	Time	parameters (s)			
		U _{ret}	0	t _{clear}	0.14			
		U clear	0	trec1	0.14			
		Urec1	0	trec2	0.14			
		Urec2	0.85	trec3	2.2			
13.3.1.11	In a	ddition to th	ne require	ments in	13.3.1.3 to 1	3.3.1.10:		P
	(a)	satisfying Point whe	the above n operatin num leadi	requirem g at Regi	ule shall be nents at the (stered Capa Factor as s	Connection city output		
	(b)				taken to be t be less tha			Р
	(c)	The DNO maximum Developm model the Power Ge generic fa Where new will specify capacity (i provide ac be require study work	demand of ent Stater Fault Ride nerating M ult level va cessary, of y the pre-f in MVA) and ditional no d for the O	conditions nents. To e Through Modules, f alues deri on reason ault and p t the Com etwork da		P		
	 study work. (d) The protection schemes and settings for internal electrical faults shall not jeopardise Fault Ride Through performance as specified in paragraphs 13.3. For the avoidance of doubt where an internal fault on the Power Generating Module occurs during a Fault Ride Through condition, the Power Generating Module's internal protection should trip the module to ensure safety and minimise damage. 						P	

Page 67 of 247

	G99/1-8					
Clause	Requirement - Test	Result - Remark	Verdict			
	 (e) Each Power Generating Module shall be designed such within 0.5 s of restoration of the voltage at the Connection Point to 90% of nominal voltage or greater, Active Power output shall be restored to at least 90% of the level immediately before the fault. Once Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that: The total active energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant. The oscillations are adequately damped. In the event of power oscillations, Power Generating Modules shall retain steady state stability when operating at any point on the Generator Performance Chart. 		Ρ			
13.3.2	In addition to paragraphs 13.3.1.1 – 13.3.1.11 where it has been specifically agreed between the DNO and the Generator that a Power Generating Facility will contribute to the DNO's Distribution Network security, (eg for compliance with EREC P2) the Power Generating Module(s) may be required to withstand, without tripping, the effects of a close up three phase fault and the Phase (Voltage) Unbalance imposed during the clearance of a close-up phase-to-phase fault, in both cases cleared by the DNO's main protection. The DNO will advise the Generator in each case of the likely tripping time of the DNO's protection, and for phase-phase faults, the likely value of Phase (Voltage) Unbalance during the fault clearance time.		Ρ			
13.3.3	In the case of phase to phase faults on the DNO's Distribution Network that are cleared by system back-up protection which will be within the plant short time rating on the DNO's Distribution Network the DNO, on request during the connection process, will advise the Generator of the expected Phase (Voltage) Unbalance.		Ρ			
13.3.4	 Other Fault Ride Through Requirements (a) In the case of a Power Park Module, the requirements in paragraph 13.3 do not apply when the Power Park Module is operating at less than 5% of its Registered Capacity or during very high primary energy source conditions when more than 50% of the Generating Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect Generator's plant and apparatus. (b) For the avoidance of doubt the requirements specified in this Section 13.3 do not apply to Power Generating Modules connected to an unhealthy circuit and islanded from the Distribution Network even for delayed auto reclosure times. 		Ρ			
13.4	Voltage Limits and Control		Р			

Page 68 of 247

	G99/1-8					
Clause	Requirement - Test	Result - Remark	Verdict			
13.4.1	Where a Power Generating Module is remote from a Network voltage control point it may be required to withstand voltages outside the normal statutory limits. In these circumstances, the DNO should agree with the Generator the declared voltage and voltage range at the Connection Point. Immunity of the Power Generating Module to voltage changes of $\pm 10\%$ of the declared voltage is recommended, but is mandatory for Type D Power Generating Modules, subject to design appraisal of individual installations.		Ρ			
13.4.2	The connection of a Power Generating Module to the Distribution Network shall be designed in such a way that operation of the Power Generating Module does not adversely affect the voltage profile of and voltage control employed on the Distribution Network. ETR 126 provides DNOs with guidance on active management solutions to overcome voltage control limitations. Information on the voltage regulation and control arrangements will be made available by the DNO if requested by the Generator.		Ρ			
13.4.3	Synchronous Power Generating Modules Excitation Performance Requirements		N/A			
13.4.4	Voltage Control Performance Requirements for Power Park Modules		Р			
13.4.4.1	Each Power Park Module shall be fitted with a continuously acting automatic control system to provide control of the voltage at the Connection Point without instability over the entire operating range of the Power Park Module. Any plant or apparatus used to provide such voltage control within a Power Park Module may be located at the Generating Unit terminals, an appropriate intermediate busbar or the Connection Point. When operating below 20% Registered Capacity the automatic control system may continue to provide voltage control using any available reactive capability. If voltage control is not being provided the automatic control system shall be designed to ensure a smooth transition between the shaded area below 20% of Active Power output and the non-shaded area above 20% of Active Power output in Figure 13.14.		Ρ			
13.4.4.2	The performance requirements for a continuously acting Automatic Voltage Control system that shall be complied with by the Generator in respect of Power Park Modules are defined in Annex C.5. The DNO will agree any site specific requirements with the Generator.		Ρ			

Page 69 of 247

G99/1-8			
Clause	Requirement - Test	Result - Remark	Verdict
13.4.5	As part of the connection application process the Generator shall agree with the DNO the set points of the control scheme for voltage control, Power Factor control or Reactive Power control as appropriate. These settings, and any changes to these settings, shall be agreed with the DNO and recorded in the Connection Agreement. The information to be provided is detailed in Schedule 5a and Schedule 5b of the Data Registration Code.		Ρ
13.4.6	The final responsibility for control of Distribution Network voltage does however remain with the DNO.		Р
13.4.7	Automatic Voltage Control (AVC) schemes employed by the DNO often assume that power flows from parts of the Distribution Network operating at a higher voltage to parts of the Distribution Network operating at lower voltages. Export from Power Generating Modules in excess of the local loads may result in power flows in the reverse direction. In this case AVC referenced to the Low Voltage side may not operate correctly without an import of Reactive power and relay settings appropriate to this operating condition. When load current compounding is used with the AVC and the penetration level of Power Generating Modules becomes significant compared to normal loads, it may be necessary to switch any compounding out of service.		Ρ
13.4.8	Power Generating Modules can cause problems if connected to networks employing AVC schemes which use negative reactance compounding and line drop compensation due to changes in Active Power and Reactive Power flows. ETR 126 provides guidance on connecting generation to such networks using techniques such as removing the generation circuit from the AVC scheme using cancellation CTs.		Ρ
13.5	Reactive Capability		Р
13.5.1	All Synchronous Power Generating Modules shall be capable of satisfying the Reactive Power capability requirements at the Connection Point as defined in Figure 13.11 when operating at Registered Capacity. In some cases, for example, on large industrial sites etc where the Power Generating Module is embedded in the Generator's Installation, the DNO may specify a performance requirement for the Power Generating Module that fits within the rectangular boundary defined in Figure 13.11, ie an envelope agreed between the DNO and the Generator within the rectangle of Figure 13.11. In such cases the DNO and Generator might agree a different control point, such as the Power Generating Module's terminals. The performance requirements of the control system including Slope (where applicable) shall be agreed between the DNO and the Generator.		N/A

Page 70 of 247

G99	11	0	
(799	/ 1	-0	

	G99/1-8	
Clause	Requirement - Test Result - Remark	Verdict
13.5.2	At Active Power output levels other than Registered Capacity all Generating Units within a Synchronous Power Generating Module shall be capable of continuous operation at any point between the Reactive Power capability limit identified on the Generator Performance Chart at least down to the Minimum Stable Operating Level. At reduced Active Power output, Reactive Power supplied at the Connection Point shall correspond to the Generator Performance Chart of the Synchronous Power Generating Module, taking the auxiliary supplies and the Active Power and Reactive Power losses of the Power Generating Module transformer or Station Transformer into account.	N/A
13.5.3	At voltages above 1.05 pu, or below 0.95 pu a Synchronous Power Generating Module shall maintain the Reactive Power output and Power Factor as far as possible recognizing that outside of the envelope of Figure 13.11 it will be necessary for the Reactive Power and/or Power Factor to be constrained by the capability as expressed on the Generator Performance Chart.	N/A
	Connection Point Voltage (p.u) 1.05 0.95 0.95 -0.92 1.00 0.92 Power Factor Consumption (lead) Figure 13.11 Reactive Power capability requirements (Synchronous Power Generating Modules)	N/A

Page 71 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.5.4	All Power Park Modules with a Connection Point voltage above 33 kV, shall be capable of satisfying the Reactive Power capability requirements at the Connection Point as defined in Figure 13.12 when operating at Registered Capacity. Connection Point Voltage (pu) 1.00 0.95 0.90 0.875 0.90 0.875 0.90 0.875 0.90 0.875 0.90 0.95 Figure 13.12 Reactive Power capability requirements (Power Park		P
13.5.5	Modules operating at Registered Capacity, voltage above 33 kV All Power Park Modules with a Connection Point voltage at or below 33 kV shall be capable of satisfying the Reactive Power capability requirements at the Connection Point as defined in Figure 13.13 when operating at Registered Capacity. Connection Point Voltage (p.u) 1.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 Power Factor (lead) Figure 13.13 Reactive Power capability requirements (Power Park Modules operating at Registered Capacity, voltage at or below 33 kV)		Ρ

Page 72 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.5.6	All Power Park Modules, shall be capable of satisfying the Reactive Power capability requirements at the Connection Point as defined in Figure 13.14 when operating below Registered Capacity. With all plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure 13.14 unless the requirement to maintain the Reactive Power limits defined at Registered Capacity under absorbing Reactive Power conditions down to 20% Active Power output has been specified by the DNO. These Reactive Power limits will be reduced pro rata to the amount of plant in service.		P
13.6	Fast Fault Current Injection		Р
13.6.1	Fast Fault Current injection is necessary to support the Total System during a fault on the Transmission System. The design of Fast Fault Current injection is tailored to this, and does not relate directly to faults on the Distribution Network, not least as these will tend to have longer clearing times than those of the Transmission System for which Fast Fault Current injection is designed. In this Section 13.6 the faults referred to are Transmission System faults which clear within 140 ms and which will be seen in the Distribution Network as a voltage depression. For this section 13.6 voltage and current quantities are assumed to be positive phase sequence values.		P
13.6.2	Each Power Park Module shall be required to satisfy the following requirements.		Р

Page 73 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	(a) For any balanced fault on the Transmission System which results in the voltage at the Connection Point falling below 0.9 pu each Power Park Module shall unless otherwise agreed with the DNO, be required to inject reactive current IR that lies above the heav black line shown in Figure 13.15.		Ρ
	Connection Point Voltage (pu) 1.1 1.0 0.9 Normal operation NOT TO SCALE		
	0.5 0.5 0.5		
	-0.312 0 0.312 1.0 Reactive current I _R (pu) Figure 13.15 – locus of magnitude of injected reactive current		
	(b) Figure 13.15 defines the reactive current IR that is the supplied during a fault on the Transmission System and which is dependent on the prefault operating conditions, and the voltage retained at the Connection Point. Each Power Park Module shall inject a reactive current I _R which shall not be less than its pre-fault reactive current and which shall as a minimum increase with the fall in retained voltage each time the retained voltage at the Connection Point falls below 0.9 pu, whilst ensuring that the overall rating of the Power Park Module is not exceeded		Ρ
	(c) In addition each Power Park Module shall be required to satisfy the reactive current requirements shown in Figures 13.16 which shows how the reactive current should be injected over time from the fault inception. The injected current shall be above the shaded area shown in Figure 13.16 (a) o Figure 13.16 (b) with priority being given to reactive current injection with any residual capability being supplied as active current. Under any fault condition where the voltage falls below 0.9 pu, there would be no requirement for any Power Park Module or constituent Generating Unit to exceed its transient of steady state rating.	r 1, 3	

Page 74 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	I _R (pu) NOT TO Acceptable envelope of reactive current injection above SCALE shaded area.		Р
	I _R is a function of the retained voltage from Figure 12.5 and which Is not required to exceed 1.0pu		
	0.65 x Δl _R + l _{Prefault}		
	h _{verfaut} 0 20 60 120 140 Time (ms)		
	Clearance Figure 13.16(a) Chart showing area of Reactive Current injections for voltage depressions of ≤ 140 ms duration I_{R} (pu)		
	Acceptable envelope of reactive current injection above shaded area.		
	l _R is a function of the retained voting informing the 12.5 and which l _R is not required to exceed 1.0pu l _R Blocking Permitted		
	Figure 13.16(b) Chart showing area of Reactive Current injections for voltage depressions of > 140 ms duration		
	 (d) For the purposes of this requirement, the maximum rated current is taken to be the maximum current each Generating Unit can supply when operating at Registered Capacity and 0.95 Power Factor at a nominal voltage of 1.0 pu. 		Ρ
	 (e) All Power Park Module equipment shall be designed to ensure a smooth transition between any of its voltage, power factor, or reactive power control modes and fault ride through mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range and abnormal conditions where the retained voltage falls below 0.90 pu of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the Power Park Module and its subsequent behaviour under fault conditions. 		Ρ

Page 75 of 247

	G99/1-8		20.01 111
Clause	Requirement - Test	Result - Remark	Verdict
	(f) Each Power Park Module shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. Generators shall be permitted to block or employ other means where the anticipated transient over voltage would otherwise exceed the 1.05 pu of nominal. Figures 13.16 (a) and Figure 13.16 (b) show the impact of variations in fault clearance time which shall be no greater than 140 ms. The DNO may agree requirements for the maximum transient over voltage withstand capability and associated time duration. Such capability and parameters will be recorded in the Connection Agreement. Where the Generator is able to demonstrate to the DNO that blocking or other control strategies are required in order to prevent the risk of transient over voltage excursions Generators are required to both advise and agree with the DNO the control strategy, which must also include the approach taken to de-blocking.		Ρ
	(g) To permit additional flexibility for example from Power Park Modules made up of full converter Generating Units, DFIG Generating Units or induction Generating Units, the DNO will permit transient deviations below the shaded area shown in Figure 13.16 (a) or Figure 13.16 (b) provided that the reactive current supplied is greater than the minimum requirement shown in Figures 13.16 (a) or Figure 13.16(b). This agreement will be formalised in the Connection Agreement.		Ρ
	(h) In the case of an unbalanced fault, each Power Park Module or each Generating Unit within a Power Park Module shall be required to inject maximum reactive current without exceeding the transient rating of the Power Park Module.		Р
13.7	Black Start Capability and rapid re-synchronisation		N/A
13.7.1	The National Electricity Transmission System will be equipped with Black Start Stations. It will be necessary for each Generator to notify the DNO if its Power Generating Module has a restart capability without connection to an external power supply, unless the Generator shall have previously notified the NETSO accordingly under the Grid Code. Such generation may be registered by the NETSO as a Black Start Station.		N/A

Page 76 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.7.2	 In case of disconnection of the Power Generating Module from the Distribution Network, the Power Generating Module shall be capable of quick resynchronisation if required by the NETSO. Where rapid re-synchronisation is required: (a) A Power Generating Module with a minimum resynchronisation time greater than 15 minutes after its disconnection from any external power supply must be capable of houseload operation from any operating point on its Power Generating Module Generator Performance Chart. And b) Power Generating Modules shall be capable of houseload operation, irrespective of any auxiliary connection to the Distribution Network. The minimum operation time shall be specified by the NETSO, taking into consideration the specific characteristics of prime mover technology. 		N/A
13.8	Technical Requirements for Embedded Medium Powe	r Stations	N/A
13.9	Operational monitoring	1	P
13.9.1	 With regard to information exchange: (a) Power Generating Facilities shall be capable of exchanging information with the DNO in real time or periodically with time stamping; (b) the DNO, in coordination with the NETSO, shall specify the content of information exchanges including a precise list of data to be provided by the Power Generating Facility. 		P
13.9.2	At each Power Generating Facility the DNO will install its own Telecontrol/SCADA outstation which will generally meet all the DNO's necessary and legal operational data requirements. The DNO will inform the Generator if additional specific data are required at the time of the connection offer.		Ρ
13.9.3	 Additionally each Power Generating Facility shall; (a) be fitted with fault recording and dynamic system monitoring facilities which shall be capable of recording System data including voltage, Active Power, Reactive Power and frequency in accordance with Annex C.6. (b) The settings of the fault recording equipment and dynamic system monitoring equipment (which is required to detect poorly damped power oscillations) including triggering criteria shall be agreed between the Generator and the DNO and recorded in the Connection Agreement. (c) The DNO may also specify that Generators shall install power quality monitoring equipment. Any such requirement including the parameters to be monitored would be specified by the DNO in the Connection Agreement. (d) Provisions for the submission of fault recording, dynamic system monitoring and power quality data to the DNO including the Connection Agreement. 		P

Page 77 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
13.9.4	The Generator will provide all relevant signals in a format to be agreed between the Generator and the DNO for onsite monitoring. All signals shall be suitably terminated in a single accessible location at the Generators site.		Р
13.9.5	The Generator shall provide to the DNO a 230 V power supply adjacent to the signal terminal location.		Р
13.9.6	Frequency Sensitive Mode (FSM) monitoring in real time		Р
13.9.6.1	Power Generating Modules shall be fitted with facilities to record and monitor the operation of Active Power Frequency Response in real time if the Generator has chosen to enter into an appropriate ancillary services commercial contract with the NETSO.		P
13.9.6.2	Provisions for the submission of Frequency Sensitive Mode data to the DNO including the data to be monitored, communications and protocols shall be specified, if required, by the DNO in the Connection Agreement.		Р
13.10	Steady State Load Inaccuracies	·	N/A
	The standard deviation of load error at steady state load over a 30 minute period shall not exceed 2.5% of a Power Generating Modules Registered Capacity. Where a Power Generating Module is instructed to operate in frequency sensitive operation, allowance will be made in determining whether there has been an error according to the governor Droop characteristic registered under the DDRC.		N/A
	For the avoidance of doubt in the case of a Power Park Module allowance will be made for the full variation of mechanical power output.		N/A
14	INSTALLATION, OPERATION AND CONTROL INTERF	ACE	Р
14.1	General		Р
14.2	Isolation and Safety Labelling		Р
14.2.1	Every Generator's Installation which includes Power Generating Modules operating in parallel with the Distribution Network must include a means of isolation capable of disconnecting the whole of the Power Generating Module7 infeed to the Distribution Network. This equipment will normally be owned by the Generator, but may by agreement be owned by the DNO.		P
14.2.2	The Generator must grant the DNO rights of access to the means of isolation without undue delay and the DNO must have the right to isolate the Power Generation Modules infeed at any time should such disconnection become necessary for safety reasons and in order to comply with statutory obligations. The isolating device should normally be installed at the Connection Point, but may be positioned elsewhere with the DNO's agreement		P

may be positioned elsewhere with the DNO's agreement.

Page 78 of 247

		Report No.: 01342	20.0171.
	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
14.2.3	To ensure that DNO staff and that of the Generator and their contractors are aware of the presence of a Power Generating Module, appropriate warning labels should be used.		Ρ
14.2.4	Where the installation is connected to the DNO LV Distribution Network the Generator should generally provide labelling at the Connection Point (Fused Cut- Out), meter position, consumer unit and at all points of isolation within the Generator's premises to indicate the presence of a Power Generating Module. The labelling should be sufficiently robust and if necessary fixed in place to ensure that it remains legible and secure for the lifetime of the installation. The Health and Safety (Safety Signs & Signals) Regulations 1996 stipulates that labels 		Ρ
14.3	Site Responsibility Schedule		Info.
14.4	Operational and Safety Aspects		Info.
14.5	Synchronizing and Operational Control		Р
15	Common Compliance and Commissioning Requiremen Generating Modules	nts for all Power	N/A
15.1	Demonstration of Compliance		N/A
15.2	Wiring for Type Tested Power Generating Modules		N/A
15.3	Commissioning Tests / Checks required at all Power G	enerating Facilities	N/A
15.4	Additional Commissioning requirements for Non Type Protection	Tested Interface	N/A
15.5	Compliance of Vehicle to Grid Electric Vehicles		N/A
15.6	Family approach to Type Testing		N/A
15.7	Compliance demonstration for Infrequent Short-Term Modules	Parallel Power Generating	N/A
16	TYPE A COMPLIANCE TESTING, COMMISSIONING AN NOTIFICATION	DOPERATIONAL	Ρ
16.1	Type Test Certification		Р

Page 79 of 247

G99/1-8	
---------	--

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
16.1.1	The Power Generating Module can comprise Fully Type Tested equipment or be made up of some Type Tested equipment and require additional site testing prior to operation. The use of Fully Type Tested equipment simplifies the connection process, the protection arrangements and reduces the commissioning test requirements.		Ρ
16.1.2	Type Tested certification is the responsibility of the Manufacturer. The Manufacturer shall submit the Type Test Verification Report confirming that the product has been Type Tested to satisfy the requirements of this EREC G99 to the Energy Networks Association (ENA) Type Test Verification Report Register. The report shall detail the type and model of product tested, the test conditions and results recorded. The report can include reference to Manufacturers' Information.		Ρ
16.1.3	The required Type Test Verification Report and declarations including that for a Fully Type Tested Power Generating Module are shown in Annex A.2:		Р
	Form A2-1 - Compliance Verification Report for Synchronous Power Generating Modules up to and including 50 kW,	Inverter Connected Power Generating Modules.	N/A
	 Form A2-2 Compliance Verification Report for Synchronous Power Generating Modules greater than> 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1, or 	Inverter Connected Power Generating Modules.	N/A
	Form A2-3 - Compliance Verification Report for Inverter Connected Power Generating Modules.		N/A

Page 80 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
	The choice of compliance route available is shown in Figure 16-1 below.		N/A
	Туре А		
	Synchronous (not inverter) <50 kW		
	Optional Approach for fully integrated <50 kW Synchronous Power Generating Modules Conventional Compliance Approach		
	Figure 16-1 Illustration of the choice of compliance route		
	It is intended that the Manufacturers will use the requirements of this EREC G99 to develop type verification certification (ie the Compliance Verification Report as shown in Annex A.2) for each of their Power Generating Module models.		N/A
	Form A2-3 caters for all asynchronous and inverter technologies of any size, with the exception of conventional induction Generating Units. Manufacturers of induction Generating Units may find it more appropriate to use forms A2-2 or A2-1 in preference to Form A2-3 (Annex A.2).		N/A
16.1.4	Guidance for Manufacturers on type testing for Power Generating Modules is included in Annex A.7 of this document.		N/A
16.1.5	Compliance with the requirements detailed in this EREC G99 will ensure that the Power Generating Module is considered to be approved for connection to the DNO's Distribution Network.		Ρ
16.1.6	The Power Generating Module shall comply with all relevant UK and European Directives and should be labelled in accordance with those requirements.		Р
16.2	Connection Process		N/A

Page 81 of 247

G99/1	-8
-------	----

Clause	Requirement - Test	Result - Remark	Verdict
16.2.1	The Installer shall discuss the installation project with the local DNO at the earliest opportunity. The connection application will need to be in format as shown in Annex A.1 (Form A1) or for Power Generating Modules greater than 50 kW by using the Standard Application Form (generally available from the DNOs website). Where a Power Generating Module is Fully Type Tested and registered with the Energy Networks Association Type Test Verification Report Register, the application should include the Manufacturer's reference number (the Product ID), and the compliance test results do not need to be submitted as part of the application.	Relied on installer.	N/A
16.2.2	 On receipt of the application, the DNO will assess: whether any Distribution Network studies are required; whether there is a need for work on the Distribution Network before the Tested Power Generating Module can be connected to the Distribution Network; and whether there is a requirement to witness the commissioning tests and checks. 	Fully Type Test.	N/A
16.2.3	Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed.	It's depended on installer and DNOs.	N/A
16.2.4	Where a Power Generating Module is not Fully Type Tested, the Generator or Installer shall provide the DNO with a Compliance Verification Report as per Annex A.2 (Forms A2-1, A2-2 or A2-3 as applicable) confirming that the Power Generating Module has or will be tested to satisfy the requirements of this EREC G99. This should be provided prior to commencing commissioning.	It's depended on installer and DNOs.	N/A
16.2.5	Where Power Generating Modules require connection to the DNO's Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility must comply with the requirements of the Connection Agreement. The Generator shall provide the DNO with a commissioning programme, which will be approved by the DNO if reasonable in the circumstances, to allow commissioning tests to be coordinated.	It's depended on installer and DNOs.	N/A

Page 82 of 247

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
16.2.6	Where commissioning tests are not witnessed, confirmation of the commissioning of each Power Generating Module will need to be made no later than 28 days after commissioning; the format and content shall be as shown in Annex A.3 (Form A3) Installation Document. The Installer or Generator, as appropriate, shall complete the declaration at the bottom of the Installation Document (Form A3) noting that this declaration also covers the Site Compliance and Commissioning Test Form (Form A2-4). Where the tests are witnessed a copy shall be provided to the DNO at the time of commissioning.	It's depended on installer and DNOs.	N/A
16.2.7	 It is the responsibility of the Generator (which may be delegated to the Installer) to ensure that the relevant information is forwarded to the local DNO. The pro forma in Annex A are designed to: (a) simplify the connection procedure for both DNO and Installer; (b) provide the DNO with all the information required to assess the potential impact of the Power Generating Module connection on the operation of the Distribution Network; (c) inform the DNO that the Generator's Installation complies with the requirements of this EREC G99; (d) allow the DNO to accurately record the location of all Power Generating Modules connected to the Distribution Network. 	It's depended on installer and DNOs.	N/A
16.3	Witnessing and Commissioning	I	N/A
16.4	Operational Notification		N/A
16.4.1	Notification that the Power Generating Module has been connected / commissioned is achieved by completing an Installation Document as per Annex A.3, which also includes the relevant details on the Generator's Installation required by the DNO.		N/A
16.4.2	The Installer, or an agent acting on behalf of the Installer, shall supply separate Installation Documents (Form A3-1 (Annex A.3) for Type A Power Generating Modules or Form A3-2 (Annex A.3) for Integrated Micro Generation and Storage installations) for each Power Generating Facility installed under EREC G99 to the DNO. Documentation shall be supplied either at the time of commissioning (where tests are witnessed) or within 28 days of the commissioning date (where the tests are not witnessed) and may be submitted electronically.	It's depended on installer and DNOs.	N/A
16.4.3	Generators who own Type A Power Generating Modules do not have permanent rights to operate their Power Generating Modules until the commissioning tests have been successfully completed (and witnessed by the DNO if required) and the Installation Document has been fully completed and sent to the DNO	It's depended on installer and DNOs.	N/A

Page 83 of 247

G99/1-8	
---------	--

	G99/1-8		1	
Clause	Requirement - Test	Result - Remark	Verdict	
17	TYPE B COMPLIANCE TESTING, COMMISSIONING AN NOTIFICATION	TYPE B COMPLIANCE TESTING, COMMISSIONING AND OPERATIONAL NOTIFICATION		
17.1	General			
17.1.1	Where Power Generating Modules require connection to the DNO's Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility shall comply with the requirements of the Connection Agreement. The Generator shall provide the DNO with a commissioning programme, which will be approved by the DNO if reasonable in the circumstances, to allow commissioning tests to be co-ordinated. The tests shall take account of the requirements in Section 15.3 and Section 15.4 where applicable.		Ρ	
17.1.2	The Generator shall use Type Tested equipment and/or Manufacturers' Information and/or site tests, as well as demonstrating commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. Examples of the combination of the use of type testing and the provision of Manufacturers' Information are given in Section 22.1. Further information about Manufacturers' Information for Inverter connected Power Park Modules is given in Section 21. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO to witness the commissioning tests unless otherwise agreed with the DNO.		Ρ	
17.1.3	It is the responsibility of the Generator to undertake commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements.		Р	
17.1.4	In addition to the commissioning tests and checks required under EREC G99, in exceptional circumstances further tests may be required by the DNO from the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.		Ρ	
17.2	Connection Process		N/A	
17.2.1	The Generator shall discuss the project with the local DNO at the earliest opportunity. The Generator will need to provide information using the Standard Application Form (generally available from the DNO's website) to allow detailed system studies to be undertaken. Connection of the Power Generating Module is only allowed after the application for connection has been approved by the DNO and any DNO works facilitating the connection have been completed .	It's depended on installer and DNOs.	N/A	

Page 84 of 247

G99/1-8

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
17.2.2	Not less than 28 days, or such shorter period as may be acceptable in the DNO's reasonable opinion, prior to the Generator wishing to synchronise its Power Generating Module for the first time the Generator will submit to the DNO a Power Generating Module Document containing at least but not limited to the items referred to in paragraph 17.2.3.	It's depended on installer and DNOs.	N/A
17.3	Witnessing and Commissioning		N/A
17.4	Final Operational Notification		N/A
18	TYPE C COMPLIANCE TESTING, COMMISSIONING AN NOTIFICATION	ID OPERATIONAL	Р
18.1	General		Р
18.1.1	Where Power Generating Modules require connection to the DNO's Distribution Network in advance of the commissioning date, for the purposes of testing, the Power Generating Facility shall comply with the requirements of the Connection Agreement. The Generator shall provide the DNO with a commissioning programme, which will be approved by the DNO if reasonable in the circumstances, to allow commissioning tests to be co-ordinated. The tests shall take account of the requirements in Section 15.3 and Section 15.4 where applicable.		Ρ
18.1.2	The Generator shall use Type Tested equipment and/or Manufacturers' Information and/or site tests as well demonstrating all the commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. Further information about Manufacturers' Information is given in Section 21. Examples of the combination of the use of type testing and the provision of Manufacturers' Information are given in Section 22.1. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO to witness the commissioning tests unless otherwise agreed with the DNO.		P
18.1.3	It is the responsibility of the Generator to undertake commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements.		Р
18.1.4	In addition to the commissioning tests and checks required under EREC G99, further tests may be required by the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.		Р

Page 85 of 247

G99/1	-8
-------	----

	G99/1-8		
Clause	Requirement - Test	esult - Remark	Verdict
18.1.5	In the case of a Power Park Module the proportion of the Power Park Module which can be simultaneously synchronised to the Total System shall not exceed 20% of the Registered Capacity of the Power Park Module (or the output of a single Generating Unit where this exceeds 20% of the Power Park Module's Registered Capacity), until the Generator has completed the voltage control tests (detailed in Annex C.9.2) to the DNO's reasonable satisfaction. Following successful completion of this test each additional Generating Unit should be included in the voltage control scheme as soon as is technically possible (unless the DNO agrees otherwise).		Ρ
18.2	Connection Process		N/A
18.3	Witnessing and Commissioning		N/A
18.4	Final Operational Notification		N/A
19	TYPE D COMPLIANCE TESTING, COMMISSIONING AND NOTIFICATION	OPERATIONAL	Ρ
19.1	General		Ρ
19.1.1	A Type D Power Generating Module will be required to obtain an Energisation Operational Notification followed by an Interim Operational Notification and a Final Operational Notification as set out in this Section.		Ρ
19.1.2	The Generator will use Type Tested equipment and or use Manufacturers' Information as well as demonstrating all the commissioning tests performed on the Power Generating Module in order to discharge the requirements of this document. Examples of the combination of the use of type testing and the provision of Manufacturers' Information are given in Section 22.1. Further information about Manufacturers' Information is given in Section 21. It is expected that the DNO will witness the commissioning tests for Power Generating Modules. Note that the DNO shall charge the Generator for attendance of staff for witness testing in accordance with its charging regime. The Generator shall make arrangements for the DNO to witness the commissioning tests unless otherwise agreed with the DNO.		Ρ
19.1.3	It is the responsibility of the Generator to undertake these commissioning tests / checks and to ensure the Power Generating Facility and Power Generating Modules meet all the relevant requirements.		Ρ
19.1.4	In addition to the commissioning tests and checks required under EREC G99, further tests may be required by the Manufacturer, Supplier, Generator or Installer of the Power Generating Modules as may be required to satisfy legislation and other standards.		Ρ
19.2	Connection Process		N/A
19.3	Interim Operational Notification		N/A
19.4	Witnessing and Commissioning		N/A

Γ

Page 86 of 247

G99/1-8

	G99/1-8		
Clause	Requirement - Test	Result - Remark	Verdict
19.5	Final Operational Notification		N/A
19.6	Limited Operational Notification		N/A
19.7	Processes Relating to Derogations		N/A
20	ONGOING OBLIGATIONS		N/A
20.1	Periodic Testing for Power Generating Modules		N/A
20.2	Operational Incidents affecting Compliance of any Po	wer Generating Module	N/A
20.3	Changes to the Power Generating Facility or Power G	enerating Module	N/A
20.4	Notification of Decommissioning		N/A
21	MANUFACTURERS' INFORMATION APPLICABLE TO	POWER PARK MODULES	Р
21.1	General		Р
21.1.1	Manufacturers' Information covers such information as type testing details, parameters or data, simulation models and reports on studies run using those models. The guidance in this Section 21 Manufacturers' Information relates to simulation models.		Р
21.1.2	In most cases Manufactures' Information is submitted by the Generator to the DNO. However, data and performance characteristics in respect of simulation models may be registered with the DNO by Generating Unit Manufacturers in the form of Manufacturers' Information.		Р
21.1.3	A Generator planning to construct a new Power Generating Facility containing the appropriate version of Generating Units in respect of which Manufacturers' Information has been submitted to the DNO may reference the Manufacturers' Information in its submissions to the DNO. Any Generator considering referring to Manufacturers' Information for any aspect of its plant and apparatus may contact the DNO to discuss the suitability of the relevant Manufacturers' Information to its project to determine if, and to what extent, the data included in the Manufacturers' Information contributes towards demonstrating compliance with those aspects of this EREC G99 applicable to the Generator. The DNO will inform the Generator if the reference to the Manufacturers' Information is not appropriate or not sufficient for its project.		Ρ
21.1.4	The process to be followed by Generating Unit Manufacturers submitting Manufacturers' Information must be agreed by the DNO. Paragraph 21.2 below indicates the specific requirement areas in respect of which Manufacturers' Information may be submitted.		Р

Page 87 of 247

G99/1-8

	G99/1-8				
Clause	Requirement - Test	Result - Remark	Verdict		
21.1.5	The DNO may maintain and publish a register of that Manufacturers' Information which the DNO has received and accepted as being an accurate representation of the performance of the relevant plant and / or apparatus. Such register will clearly identify the Manufacturer, the model(s) of Generating Unit(s) to which the report applies and the provisions of EREC G99 in respect of which the report contributes towards the demonstration of compliance in such a way that these models can easily be identified for appropriate use in other similar projects. The inclusion of any report in the register does not in any way confirm that any Power Park Modules which utilise any Generating Unit(s) covered by a report is or will be compliant with EREC G99.	It's depended on installer and DNOs.	N/A		
21.2	 Manufacturers' Information in respect of Generating Units may cover one (or part of one) or more of the following provisions: (a) Fault Ride Through capability; (b) Power Park Module mathematical model DDRC 5c. 		P		
21.3	Reference to a Manufacturer's Data & Performance Report in a Generator's submissions does not by itself constitute compliance with EREC G99.		Р		
21.4	A Generator referencing Manufacturers' Information should insert the relevant Manufacturers' Information reference in the appropriate place in the submission forms detailed in the Annexes. The DNO will consider the suitability of Manufacturers' Information in place of DDRC data submissions such as a mathematical model suitable for representation of the entire Power Park Module as per Annex B.4.4 or Annex C.7.4.5 as applicable. Site specific parameters will still need to be submitted by the Generator.		Ρ		
21.5	It is the responsibility of the Generator to ensure that the correct reference for the Manufacturers' Information is used and the Generator by using that reference accepts responsibility for the accuracy of the information. The Generator shall ensure that the Manufacturer has kept the DNO informed of any relevant variations in plant specification since the submission of the relevant Manufacturers' Information.		Ρ		
21.6	The DNO may contact the Generating Unit Manufacturer directly to verify the relevance of the use of such Manufacturers' Information. If the DNO believes the use some or all of such Manufacturers' Information is incorrect or the referenced data is inappropriate then the reference to the Manufacturers' Information may be declared invalid by the DNO. Where, and to the extent possible, the data included in the Manufacturers' Information is appropriate, the compliance assessment process will be continued using the data included in the Manufacturers' Information.	It's depended on installer and DNOs.	N/A		

Page 88 of 247

G99/1-	-8
--------	----

			G99/1-8		
Clause	Requirement	- Test		Result - Remark	Verdict
22	TYPE TESTI	NG AND ANNEX INFO	ORMATION		Р
22.1	Fully Type T	ested and Type Teste	ed equipment		Р
			Fully Type Tested.	Ρ	
	Fully Type Tested (Type A only ≤ 50 kW)	Manufacturers' Information Registered as Fully Type Tested information on ENA website via the Compliance Verification Report (Form A2-1, A2-2 or A2-3 as appropriate)	Power Quality Assessment and Site Tests An assessment of compliance with EREC G5 and EREC P28 is necessary. This will generally allow connection of a Fully Type Tested device with no need for mitigation. However, where the fault level is unusually low (eg in remote rural locations) mitigation measures might be needed Only installation checks required – as on the Installation Document (Form A3-1 or A3-2)		
	Type Tested (Type A) Type Tested (B, C, D)	Registered as product or component Type Test information on ENA Website using applicable parts of Compliance Verification Report (Form A2-1, A2-2 or A2- 3); and/or Supplied by the Generator using applicable parts of Compliance Verification Report (Form A2-1, A2-2 or A2-3) Registered as product or component Type Test information on ENA Website; and/or Supplied by the Generator	Compliance of the installation with EREC G5 and EREC P28 Demonstration of technical requirements not covered by Manufacturers' Information. (Form A3-1 or A3-2) Standard installation checks (Form A3-1 or A3-2). Additional Site Compliance and Commissioning Checks (Form A2-4) may also be required Compliance of the installation with EREC G5 and EREC P28 Demonstration of technical requirements not covered by Manufacturers' Information. (Form B2-1 or Form C2-1) Standard installation checks		Р
	One off installation (B, C, D)	To be provided by the Generator for those aspects that cannot be demonstrated on site (including simulations etc)	Compliance of the installation criecks (Form B3 or Form C3). Additional Site Compliance and Commissioning Checks (Form B2-2 or Form C2-2) may also be required Compliance of the installation with EREC G5 and EREC P28 Demonstration of technical requirements not covered by Manufacturers' Information . (Form B2-1 or Form C2-1) Standard installation checks also required (Form B3 or Form C3). Additional Site Compliance and Commissioning Checks (Form B2-2 or Form C2-2) may also be required		
22.2	Annex Conte	ents and Form Guida	nce		Р

			G99/1-8		
Clause	Require	ement - Test		Result - Remark	Verdict
	Annex	Application	Form Title]	Р
	A.0	Cover Sheet for Type A Power Generating Facility Forms			
	A.1	Connection Application for Type A Fully Type Tested (<50 kW) Power Generating Modules Connection Application for Integrated Micro Generation and Storage Note for all other Power Generating Modules the DNO's Standard Application Form shall be used.	Form A1-1: Application for connection of Power Generating Module (s) with Total Aggregate Capacity <50 kW 3- phase or 17 kW single phase Form A1-2: Application for connection of an Integrated Micro Generation and Storage installation		
	A.2	Compliance report for Type A Type Tested	Form A2-1: Compliance Verification Report for Synchronous Power Generating Modules up to and including 50 kW Form A2-2: Compliance Verification Report for Synchronous Power Generating Modules > 50 kW and also for Synchronous Power Generating Modules ≤ 50 kW where the approach of this form is preferred to that in Form A2-1 Form A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules		
	A.2	Additional Compliance and Commissioning test requirements for Type A Power Generating Modules	Form A2-4: Site Compliance and Commissioning test requirements for Type A Power Generating Modules		

Page 89 of 247

Page 90 of 247

Report No.: 6134228.51V1.1

G99/1-8					
Clause	Require	ement - Test		Result - Remark	Verdict
	A.3	Installation and Commissioning a Power Generating Facility comprising one or more Type A Generating Modules	Form A3-1: Installation Document for Type A Power Generating Modules Form A3-2: Installation Document for Integrated Micro Generation and Storage installations		Ρ
	A.4	Emerging Technologies and other Exceptions			
	A.5	Example calculations to determine if unequal generation across different phases is acceptable or not		-	
	A.6	Scenario examples in respect of the application of EREC G59 and EREC G99 to new or modified sites after 27/04/19		-	
	A.7	Requirements for Type Testing Type A Power Generating Modules			
	B.1	Application	Refer to Standard Application Form		
	B.2-1	Compliance documentation for Type B Power Generating Modules	Form B2-1: Power Generating Module Document for Type B Power Generating Modules	-	
	B.2-2	Additional Compliance and Commissioning test requirements for Type B Power Generating Module s	Form B2-2 Site Compliance and Commissioning test requirements for Type B Power Generating Modules		
	B.3	Installation and Commissioning Confirmation Form	Form B2: Installation and Commissioning Confirmation Form for Type B Power Generating Module s		
	B.4	Simulation Studies for Type B Power Generating Modules			
	B.5	Compliance Testing of Type B Synchronous Power Generating Modules			
	B.6	Compliance testing of Type B Power Park Module s			
	C.1	Application	Refer to Standard Application Form		
	C.2-1	Compliance documentation for Type C and Type D Power Generating Module s	Form C2-1: Power Generating Module Document for Type C and Type D Power Generating Modules		
	C.2-2	Additional Compliance and Commissioning test requirements for	Form C2-2 Site Compliance and Commissioning test requirements for	-	
		Type C and Type D Power Generating Modules	Type C and Type D Power Generating Modules		
	C.3	Installation and Commissioning Confirmation Form	Form C3: Installation and Commissioning Confirmation Form for Type C and Type D Power Generating Modules		
	C.4	Performance Requirements For Continuously Acting Automatic Excitation Control Systems For Type C and Type D Synchronous Power Generating Modules			
	C.5	Performance Requirements For Continuously Acting Automatic Excitation Control Systems For Type C and Type D Power Park Modules			
	C.6	Functional Specification for Fault Recording and Power Quality Monitoring Equipment Studies for Type C and Type D Power Generating Modules			
	C.7	Simulation Studies for Type C and Type D Power Generating Module s			

Page 91 of 247

G99/1-8

Clause	Requi	rement - Test		Result - Remark	Verdict
	C.8	Compliance Testing of Type C and Type D Synchronous Power Generating Modules			Р
	C.9	Compliance Testing of Type C and Type D Power Park Module s			
	C.10	Minimum Frequency Response Capabilities for Type C and Type D Power Generating Module s			
	D.0	Decommissioning of any Power Generating Module	Form D1: Decommissioning Confirmation		
	D.1	Additional Information Relating to System Stability Studies			
	D.2	Loss of Mains Protection Analysis			
	D.3	Main Statutory and other Obligations			
	D.4	Summary of Reactive Power and voltage control requirements			

Page 92 of 247

G99/1-8

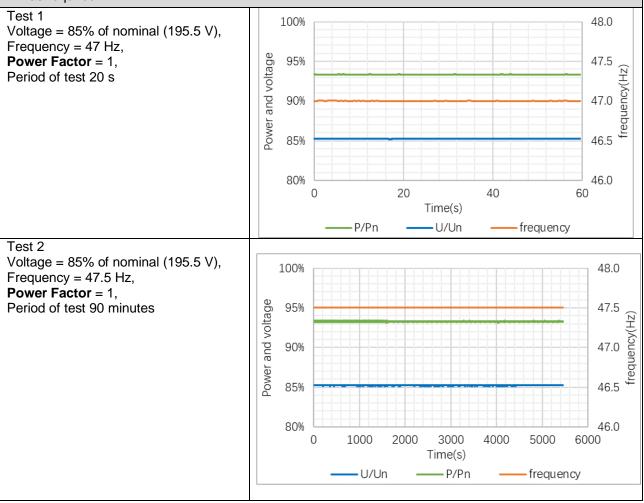
Clause	Requirement - Test	Result - Remark	Verdict
--------	--------------------	-----------------	---------

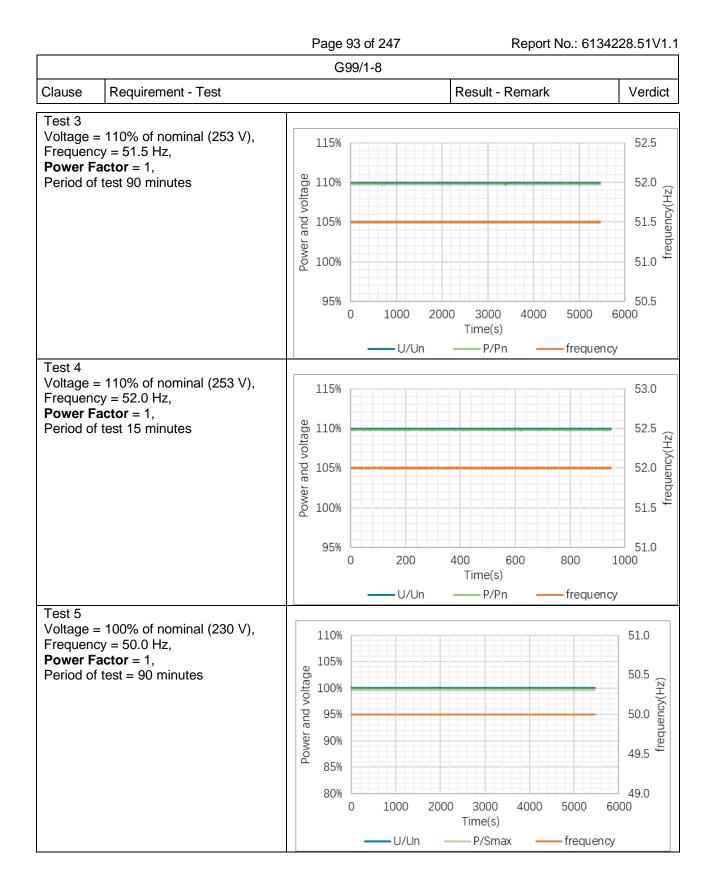
Appendix 1: Compliance Verification Report – Tests for Type B, C and D Inverter Connected Power Generating Modules

12.2.1/12.2.2	Operating Pange:
13.2.1/13.2.2	Operating Range:

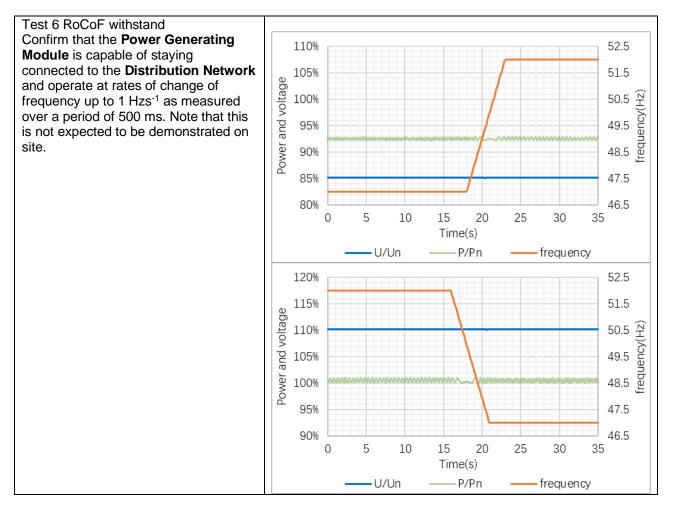
Р

Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.


Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.


The Interface Protection shall be disabled during the tests.

In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source. In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.


Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Note that the value of voltage stated in brackets assumes a LV connection. This should be adjusted for HV as required.

		Page 94 of 247	Report No.: 6134	228.51V1.1
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict

			Page 95 of 247	Repo	rt No.: 61342	28.51V1	
			G99/1-8				
Clause	Requirem	nent - Test		Result - Remar	k	Verdict	
Model: So	G350HX					Р	
Test 1:							
	d Voltage √)	Measured Frequency (Hz)	Measured Power (kW)	Measured Power factor	Test T (seco	-	
681	1.81	47.00	298.75	1.000	20)	
Test 2:							
	d Voltage √)	Measured Frequency (Hz)	Measured Power (kW)	Measured Power factor	Test T (Minu	-	
681	681.79 4		298.44	1.000	90	90	
Test 3:							
	d Voltage √)	Measured Frequency (Hz)	Measured Power (kW)	Measured Power factor	Test T (Minu		
879	9.56	51.50	351.49	1.000	90)	
Test 4:							
	d Voltage √)	Measured Frequency (Hz)	Measured Power (kW)	Measured Power factor	Test T (Minu	-	
879	9.54	52.00	351.47	1.000	15	5	
Test 5:							
	d Voltage √)	Measured Frequency (Hz)	Measured Power (kW)	Measured Power factor	Test T (Minu	-	
80	0.6	50.00	35135.3	1.000	90)	
Test 6:					·		
	d Voltage √)	Ramp range	Test frequency ramp	Test Duration	Confirm	no trip	
68	0.0	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0 s	No t	rip	
88	0.0	52.0 Hz to 47.0 Hz	-1 Hzs ⁻¹	5.0 s	No t	rip	

Page 96 of 247

Ρ

G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict
--------	--------------------	-----------------	---------

9.4.3 Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the $2^{nd} - 13^{th}$ harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment. For three phase **Power Generating Modules**, measurements for all phases should be provided.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

The rating of the **Power Generating Module** (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Model: SG350HX

Power Generating Module tested to BS EN 61000-3-12 Power Generating Module rating per phase Harm

Power Generating Module rating per phase (rpp)				117.3		kVA M		Measured V	Harmonic % = Measured Value (A) x 80/rating per phase (kVA)	
Single or three phase measurements (for single phase measurements, only complete L1 columns below)				three phas	e PV	inverte	er	-		
Harmonic	At 45-55%	of Register	ed Capacit	y				Limit in BS	EN 61000-	
Паппопіс	Measured	Value (MV)	in Amps	Measured	Value	e (MV)	in %	3-12	phase 3 phase	
	L1	L2	L3	L1	L	.2	L3	1 phase	3 phase	
2	0.248	0.219	0.164	0.107	0.0)95	0.071	8%	8%	
3	0.165	0.142	0.281	0.071	0.0	061	0.122	21.6%	Not stated	
4	0.104	0.069	0.116	0.045	0.0	030	0.050	4%	4%	
5	0.124	0.161	0.093	0.054	0.0)70	0.040	10.7%	10.7%	
6	0.046	0.068	0.037	0.020	0.0)29	0.016	2.67%	2.67%	
7	0.086	0.054	0.108	0.037	0.0)23	0.047	7.2%	7.2%	
8	0.047	0.072	0.037	0.020	0.0)31	0.016	2%	2%	
9	0.082	0.027	0.094	0.035	0.0)12	0.041	3.8%	Not stated	
10	0.062	0.041	0.034	0.027	0.0)18	0.015	1.6%	1.6%	
11	0.301	0.405	0.361	0.130	0.1	175	0.156	3.1%	3.1%	
12	0.017	0.015	0.019	0.007	0.0	006	0.008	1.33%	1.33%	
13	0.197	0.222	0.251	0.085	0.0)96	0.109	2%	2%	
THD	-	-	-	0.22	0.	25	0.25	23%	13%	
PWHD	-	-	-	0.61	0.	73	0.73	23%	22%	

THD = Total Harmonic Distortion

PWHD = Partial Weighted Harmonic Distortion

			F	age 97 of 24	17	Re	port No.: 613	34228.51V1.1	
				G99/1-8					
Clause	lause Requirement - Test Result - F					Result - Ren	nark	Verdict	
Harmonic		f Registered					Limit in BS EN 61000-		
	Measured	Value (MV)	in Amps	Measured	Value (M)	/) in %	3-12	T	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase	
2	0.107	0.269	0.301	0.046	0.116	0.130	8%	8%	
3	0.318	0.184	0.475	0.138	0.080	0.205	21.6%	Not stated	
4	0.213	0.119	0.190	0.092	0.051	0.082	4%	4%	
5	0.164	0.135	0.104	0.071	0.058	0.045	10.7%	10.7%	
6	0.194	0.069	0.145	0.084	0.030	0.063	2.67%	2.67%	
7	0.189	0.294	0.388	0.082	0.127	0.168	7.2%	7.2%	
8	0.073	0.059	0.085	0.032	0.026	0.037	2%	2%	
9	0.132	0.055	0.136	0.057	0.024	0.059	3.8%	Not stated	
10	0.041	0.048	0.059	0.018	0.021	0.026	1.6%	1.6%	
11	0.980	0.908	0.939	0.046	0.393	0.406	3.1%	3.1%	
12	0.054	0.053	0.032	0.138	0.023	0.014	1.33%	1.33%	
13	0.309	0.283	0.311	0.092	0.122	0.134	2%	2%	
THD	-	-	-	0.50	0.46	0.54	23%	13%	
PWHD	-	-	-	1.57	1.45	1.59	23%	22%	

THD = Total Harmonic Distortion PWHD = Partial Weighted Harmonic Distortion

Report	No.:	6134228.51V1	.1

Page 98 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Verdict

9.4.3 Power Quality – Voltage fluctuations and Flicker: Ρ These tests should be undertaken in accordance with Annex A.7.2.5.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable maximum impedance. Model: SG350HX Test start date 2022-07-09 Test end date 2022-07-09 Test location No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China Starting Stopping Running d(max) d(max) P_{lt} 2 hours d(c) [%] d(t) [%] d(c) [%] d(t) [%] Pst [%] [%] [%] [%] Measured L1 0.22 0.03 0 0 0 0 0.09 0.07 Values at test L2 0.25 0.02 0 0 0 0 0.09 0.07 impedance L3 0.24 0.01 0 0 0 0 0.09 0.07 Normalised 0.22 0 0 0 0 0.09 L1 0.03 0.07 to standard impedance 0 0 0 0 12 0.25 0.02 0.09 0.07 L3 0.24 0 0 0 0 0.09 0.01 0.07 Normalised L1 N/A N/A N/A N/A N/A N/A N/A N/A to required maximum 12 N/A N/A N/A N/A N/A N/A N/A N/A impedance L3 N/A N/A N/A N/A N/A N/A N/A N/A Limits set under BS EN 61000-3-4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 0.65 11 Test R Ω XI Ω 0.4 0.25 Impedance Standard R 0.24 * 0.15 * Impedance Ω XI Ω 0.4 ^ 0.25 ^ Maximum N/A # R Ω N/A # Ω XI Impedance * Applies to three phase and split single phase Power Generating Modules. ^ Applies to single phase Power Generating Module and Power Generating Modules using two phases on a three phase system. Delete as appropriate.

All the test value and calculated value normalised to standard impedance of dmax test, dc test, d(t) test, Pst test and Plt test were complies with the requirements of IEC 61000-3-11 and therefore is not subject to conditional connection, so the manufacturer no need to declare maximum Impedance.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the Power Factor of the generation output is 0.98 or above. Normalised value = Measured value x reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

TRF No. G99/1-8_V1.0

Page 99 of 247 G99/1-8 **Result - Remark** Clause **Requirement - Test** Verdict Continuous operating L1 phase Flicker Mode YOKOGAWA 🔶 llover:= = = Iover:==== Flicker:Complete 2:00:00 IEC61000-4-15 Ed2.0 12/12 Count Interval • 10m00s∕10m00s Element Volt Range 1000v(230v/50Hz) Element1 Judgement: Pass Un (111) 0.80056kv Total Judgement: Pass Freq(U1) 50.002 Hz (Element1,2,3,4) dc[%] dmax[%] Tmax[ms] P1t Pst 3.30 1.00 Limit 4.00 500 0.65 3.30(%) N:12 0.00 Pass 0.00 Pass 0.07 Pass No. 1 0 Pass 0.38 Pass 0 Pass 0.09 Pass 0.20 Pass 2 0.07 Pass 3 0.00 Pass 0.00 Pass 0 Pass 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 4 5 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 0.07 Pass 0.00 Pass 0.00 Pass 0 Pass 6 7 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 8 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 9 10 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 11 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 12 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 0.07 Pass Pass Result Pass Pass Pass Update 3600 2022/07/09 08:53:57 Continuous operating L2 phase Flicker Mode llover := = = YOKOGAWA 🔶 IEC61000-4-15 Ed2.0 Iover:= = = = Flicker:Complete 2:00:00 Count 12/12 ■ 10m00s/10m00s Interval Element 1 1000v(230v/50Hz) Volt Range Element1 Judgement: Pass 0.80056kV Un (U1) Total Judgement: Pass Freq(U1) 50.002 Hz (Element1,2,3,4) dc[%] dmax[%] Tmax[ms] Pst Plt Limit 4.00 1.00 3.30 500 0.65 3.30(%) N:12 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass No. 1 0.20 Pass 0.38 Pass 0 Pass 0.09 Pass 2 0.00 Pass 3 0.00 Pass 0 Pass 0.07 Pass 0.00 Pass 0.00 Pass 4 0 Pass 0.07 Pass 0.07 Pass 5 0.00 Pass 0.00 Pass 0 Pass 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 6 7 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 8 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 9 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 0.00 Pass 0.07 Pass 10 0.00 Pass 0 Pass 11 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 12 0.00 Pass 0.00 Pass 0 Pass 0.07 Pass 0.07 Pass Result Pass Pass Pass Pass Update 3600 2022/07/09 08:53:57

Page 100 of 247 G99/1-8

Clause Requirement - Test

Result - Remark Verdict

			Continuc	ous operating I	_3 phase		
	icker M C61000-		Uover∶= = = Iover∶= = =	■ ■ F1i	cker:Complet		ogawa 🔶
	Element	Count Interval 3			12/12 10m00s/10m0	Ds	
	Volt Ra	nge 1000v(2		Element3 Jud			
	Un (U3 Freq(U3			Total Jud (Element1,2,	gement: Pass 3,4)		
	· .	dc[%]	dmax[%]	Tmax[ms]	Pst	Plt	
	Limit	3.30	4.00	500	1.00	0.65	
	No. 1	0.00 Pass	0.00 Pass	3.30(%) 0 Pass	0.07 Pass	N:12	
	2	0.23 Pass	0.40 Pass	0 Pass	0.09 Pass		
	3	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass		
	45	0.00 Pass 0.00 Pass	0.00 Pass 0.00 Pass	O Pass O Pass	0.07 Pass 0.07 Pass		
	6	0.00 Pass 0.00 Pass	0.00 Pass 0.00 Pass	0 Pass 0 Pass	0.07 Pass 0.07 Pass		
	7	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass		
	8	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass		
	9	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass		
	10	0.00 Pass 0.00 Pass	0.00 Pass 0.00 Pass	O Pass O Pass	0.07 Pass 0.07 Pass		
	12	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass		
	Result		Pass	Pass	Pass	0.07 Pass	
	licker M EC61000		Uover:= = = Iover:= = =	■ ■ F1i	cker∶Complet 2⁄2		ogawa 🔶
		Count Interval			272 10m00s/10m0	Ds	
	Element Volt Ra Un (U3 Freq(U3	nge 1000v(2) 0.8001) 50.00	OkV 2 Hz	(Element1,2,	gement: Pass 3,4)		
	Limit	dc[%] 3.30	dmax[%] 4.00	Tmax[ms] 500	Pst 1.00	P1t 0.65	
		3.30	4.00	3.30(%)	1.00	N:12	
	No. 1 2	0.01 Pass 0.00 Pass	0.24 Pass 0.00 Pass	0 Pass 0 Pass	0.08 Pass 0.08 Pass		
	2	0.00 Pass	0.00 Pass	0 Fass	0.00 Pass		
	Result	Pass	Pass	Pass	Pass	0.04 Pass	
Upd		00			022/07/09 09		

Page 101 of 247

Report No.: 6134228.51V1.1

G99/1-8

Requirement - Test Clause

Result - Remark

		S	witch on and s	switch off ope	rating L2 phas	se			
	Flicker M IFC61000-		Uover:= = = Iover:= = = =	■ ■ F1í	cker:Complet		ogawa 🔶		
		Count			2/2				
1	Element				10m00s/10m0				
	Volt Ra Un (U2) 0.7992	4kV		gement: Pass				
	Freq(U2			(Element1,2,		3,4)			
	Limit	dc[%] 3.30	dmax[%] 4.00	Tmax[ms] 500 3.30(%)	Pst 1.00	P1t 0.65 N:12			
	No. 1 2	0.02 Pass 0.00 Pass	0.25 Pass 0.00 Pass	0 Pass 0 Pass	0.08 Pass 0.08 Pass	N+ 12			
		0.00 1 033	0.00 1 033	0 1 0 3 3	0.00 1 033				
	Result	Daga	Base	Baaa	Baaa	0.04 Pass			
	Kesult	Pass	Pass	Pass	Pass	U.U4 Pass			
	Update 6	00		2	022/07/09 09	:40:10			
	Switch on and switch off operating L3 phase								
				switch off ope	rating L3 phas				
	Flicker M IEC61000-	ode	witch on and s Uover := = = Iover := = = =	-	rating L3 phas cker :Comp1et	YOK	ogawa 🔶		
		ode 4-15 Ed2.0 Count	Uover:= = =	-	cker:Complet	ҮОК e 0:20:00	ogawa 🔶		
	IEC61000-	ode 4-15 Ed2.0 Count Interval 1	Uover:= = = Iover:= = =	- F1i	cker:Complet 2/2 10m00s/10m0	чок е 0:20:00 Os	ogawa 🔶		
	IEC61000	ode 4-15 Ed2.0 Count Interval 1 nge 1000V(2) 0.8002	Uover:= = = Iover:= = = 30V/50Hz) 3kV	Fli Fli	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass	ҮОК е 0:20:00 Os	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%]	Uover: ••• • Iover: ••• 30V/50Hz) 3kV 1 Hz dmax[%]	Fli Element1 Jud Tota1 Jud (Element1,2, Tmax[ms]	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst	ҮОК е 0:20:00 Os Р1t	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 <u>dc[%]</u> 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz <u>dmax[%]</u> 4.00	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%)	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00	ҮОК е 0:20:00 Os	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%]	Uover: ••• • Iover: ••• 30V/50Hz) 3kV 1 Hz dmax[%]	Fli Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst	YOK e 0:20:00 Os <u>P1t</u> 0.65	одања 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1 Limit No. 1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%] 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65	одања 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1 Limit No. 1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%] 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1 Limit No. 1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%] 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1 Limit No. 1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%] 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65	ogawa 🔶		
	IEC61000- Element Volt Ra Un (U1 Freq(U1 Limit No. 1	ode 4-15 Ed2.0 Count Interval nge 1000V(2) 0.8002) 50.00 dc[%] 3.30	Uover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass	F1i Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) Pst 1.00 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65	ogawa 🔶		
	Element Volt Ra Un (Ul Freq(Ul Limit No. 1 2	ode 4-15 Ed2.0 Count Interval 9 0.00V(2) 0 50.00 dc[%] 3.30 0.03 Pass 0.00 Pass	Uover: Iover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass 0.00 Pass	Fli Element1 Jud Total Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) <u>Pst</u> 1.00 0.08 Pass 0.08 Pass	¥ОК е 0:20:00 Os ₽1t 0.65 N:12	ogawa 🔶		
	Element Volt Ra Un (Ul Freq(Ul Limit No. 1 2 Result	ode 4-15 Ed2.0 Count Interval 9 0.00V(2) 0 50.00 dc[%] 3.30 0.03 Pass 0.00 Pass	Uover: Iover: Iover: 30V/50Hz) 3kV 1 Hz dmax[%] 4.00 0.22 Pass 0.00 Pass	Fli Element1 Jud Tota1 Jud (Element1,2, <u>Tmax[ms]</u> 500 3.30(%) 0 Pass 0 Pass 0 Pass	cker:Complet 2/2 10m00s/10m0 gement: Pass gement: Pass 3,4) <u>Pst</u> 1.00 0.08 Pass 0.08 Pass	YOK e 0:20:00 Os <u>P1t</u> 0.65 N:12 0.04 Pass	ogawa 🔶		

Page 102 of 247

Report No.: 6134228.51V1.1

G99/1-8

Clause

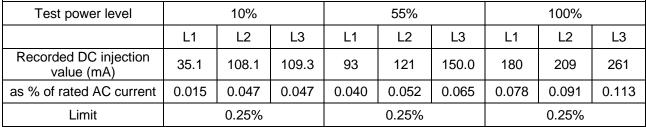
Requirement - Test

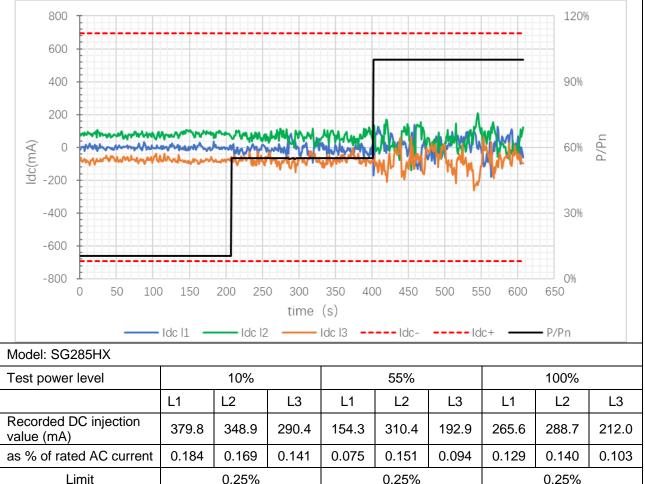
Result - Remark

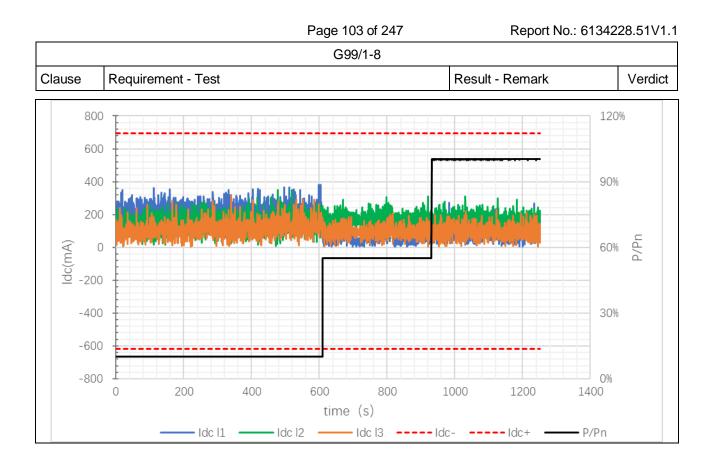
Verdict

Ρ

9.4.6 Power quality – DC injection:


The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.


The % DC injection ("as % of rated AC current" below) is calculated as follows:


% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

Model: SG350HX

Page 104 of 247

Ρ

G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict
--------	--------------------	-----------------	---------

9.4.5 Power Factor:

The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2

Note that the value of voltage stated in brackets assumes a \boldsymbol{LV} connection. This should be adjusted for \boldsymbol{HV} as required.

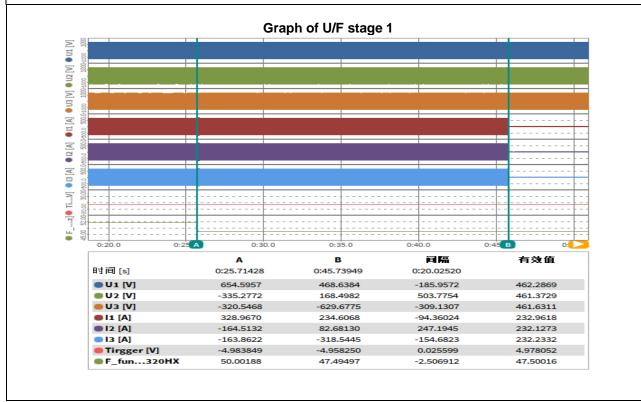
Model: SG350HX						
Voltage	0.94 pu (752 V)	1 pu (800 V)	1.1 pu (880 V)			
Measured value	0.9999	0.9999	0.9999			
Power Factor Limit	>0.95	>0.95	>0.95			
Model: SG285HX						
Voltage	0.94 pu (752 V)	1 pu (800 V)	1.1 pu (880 V)			
Measured value	0.9997	0.9998	0.9999			
Power Factor Limit >0.95 >0.95						

Page 105 of 247

Ρ

G99/1-8

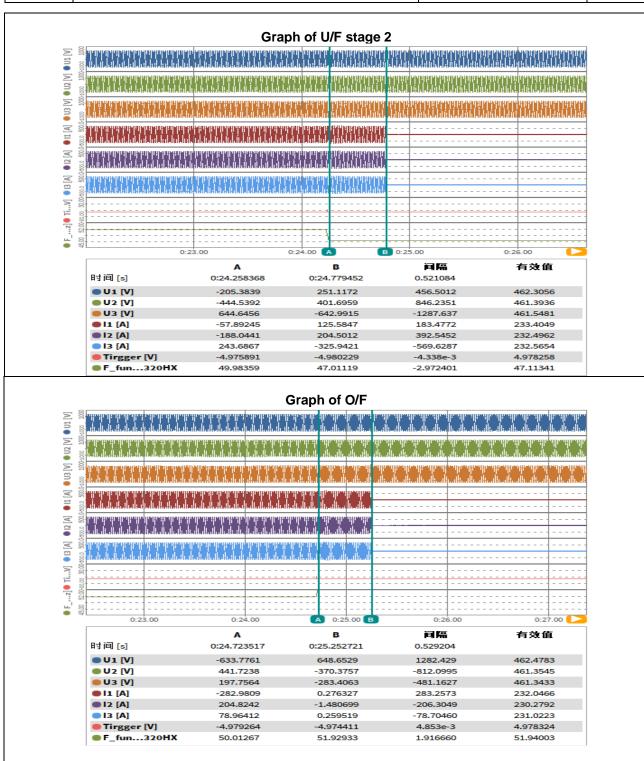
Clause Requirement - Test	Result - Remark	Verdict
---------------------------	-----------------	---------


10.6.7.1 Protection – Frequency tests:

.

These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: SG350HX								
Function	Setting		Trip test		"No trip tests"			
	Frequency Time delay		Frequency	Time delay	Frequency / time	Confirm no trip		
U/F stage 1	47.5 Hz	20 s	47.49 Hz	20.03 s	47.7 Hz 30 s	No trip		
U/F stage 2	47.0 Hz 0.5 s		46.99 Hz	0.521 s	47.2 Hz 19.5 s	No trip		
					46.8 Hz 0.45 s	No trip		
O/F	52.0 Hz	0.5 s	52.01 Hz	0.529 s	51.8 Hz 120.0 s	No trip		
					52.2 Hz 0.45 s	No trip		


Note: For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Page 106 of 247 G99/1-8

Result - Remark

Clause

Requirement - Test

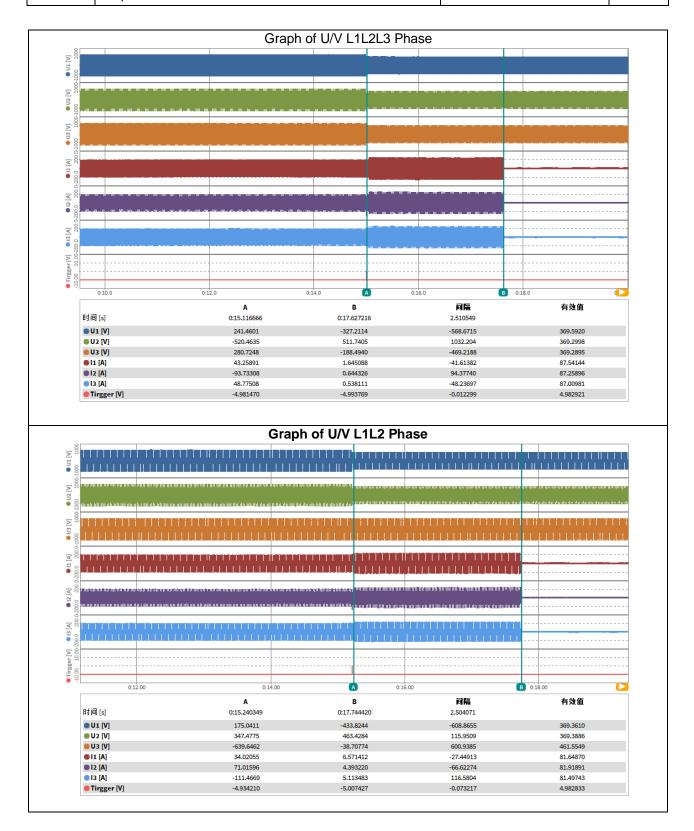
Page 107 of 247

Report No.: 6134228.51V1.1

			G99/1-8		Report No		2010111
Clause Re	equirement - Te	st	699/1-0		Result - Remark		Verdict
							Verdiot
10.6.7.1 Prot	ection – Volta	ige tests (LV I	Protection)				Р
	hould be carrie be stated. For				2. For trip tests, volt	age and	time
	value of voltag nt of the VT rat			V connection	This should be adj	justed for	HV
Model: SG35	0HX						
L1L2L3 Phas	e		1		1		
Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	-	Confirm	n no trip
U/V	0.8 pu	2.5 s	639.45 V	2.510 s	654 V 5.0 s	No trip	
					626 V 2.45 s	No trip	
O/V stage 1	1.14 pu	1.0 s	912.42 V	1.056 s	898 V 5.0 s	No trip	
O/V stage 2	1.19 pu	0.5 s	952.01 V	0.532 s	938 V 0.95 s	No trip	
					966 V 0.45 s	No trip	
L1-L2 Phase	1						
Function	Set	ting	Trip	o test	"No tr	ip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirr	n no trip
U/V	0.8 pu	2.5 s	639.47 V	2.504 s	654 V 5.0 s	Nc	o trip
					626 V 2.45 s	No	o trip
O/V stage 1	1.14 pu	1.0 s	912.62 V	1.048 s	898 V 5.0 s	Nc	o trip
O/V stage 2	1.19 pu	0.5 s	952.28 V	0.523 s	938 V 0.95 s	Nc	o trip
					966 V 0.45 s	No	o trip
L2-L3 Phase							
Function Setting		Trip test		"No trip tests"			
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confir	n no trip
U/V	0.8 pu	2.5 s	639.62 V	2.540 s	654 V 5.0 s	No	o trip
					625.5 V 2.45 s	Nc	o trip
O/V stage 1	1.14 pu	1.0 s	912.94 V	1.027 s	898 V 5.0 s	No	o trip

Page 108 of 247

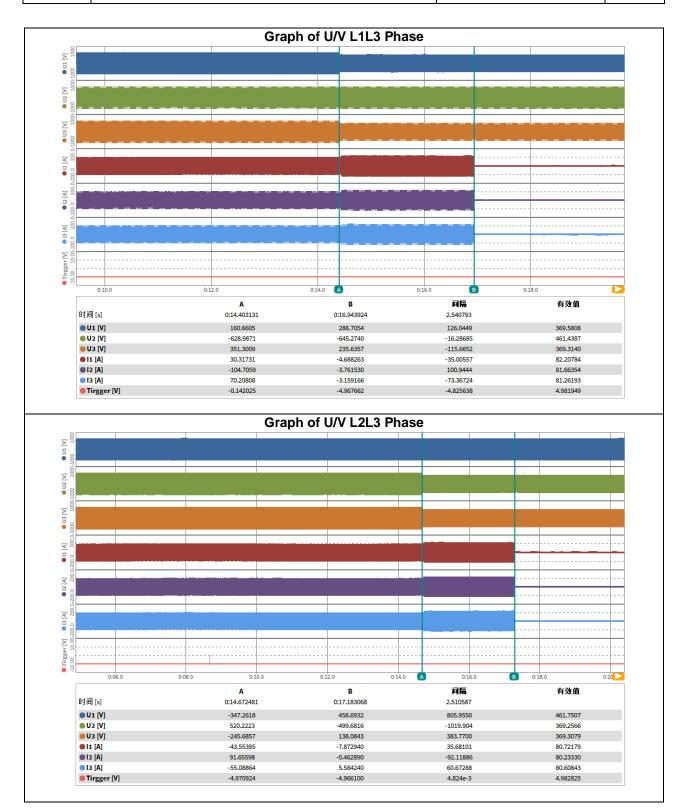
Report No.: 6134228.51V1.1


			G99/1-8	3			
Clause	Requirement - Te	est			Result - Remark		Verdict
O/V stage	2 1.19 pu	0.5 s	952.30 V	0.536 s	938 V 0.95 s	No trip	
					966 V 0.45 s	No	trip
L3-L1 Phas	se						
Function	Se	tting	Trip	test	"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirr	n no trip
U/V	0.8 pu	2.5 s	639.47 V	2.510 s	654 V 5.0 s	No	trip
					626 V 2.45 s	No	trip
O/V stage	1 1.14 pu	1.0 s	912.37 V	1.047 s	898 V 5.0 s	No	trip
O/V stage	2 1.19 pu	0.5 s	952.76 V	0.555 s	938 V 0.95 s	No	trip
					966 V 0.45 s	No	trip
measured need to be	at a larger deviat	ion than the mi e setting ±4 V a	nimum require	d to operate	5 V. The time delay the protection. The s shown in the table	No trip t	

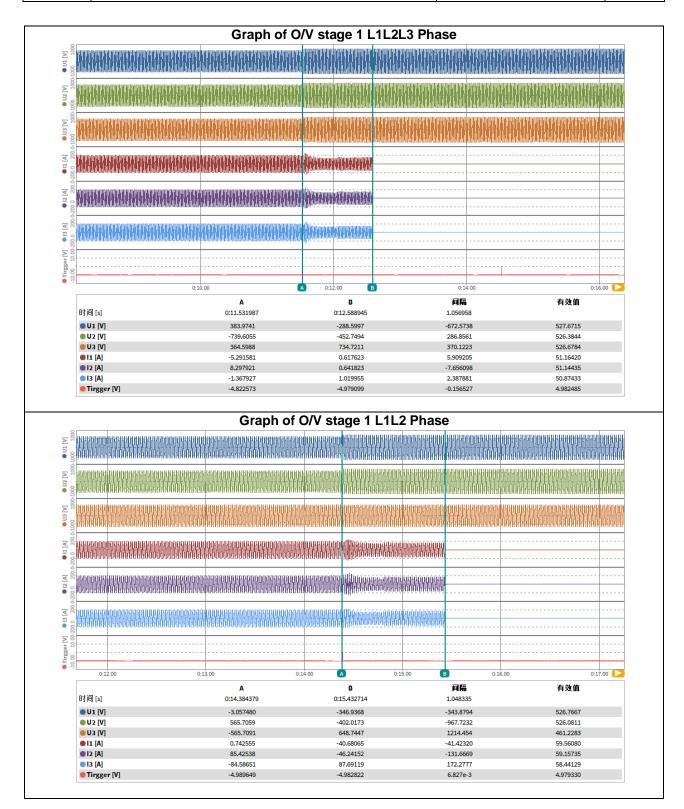
Page 109 of 247

G99/1-8

Clause Requirement - Test Res


Result - Remark

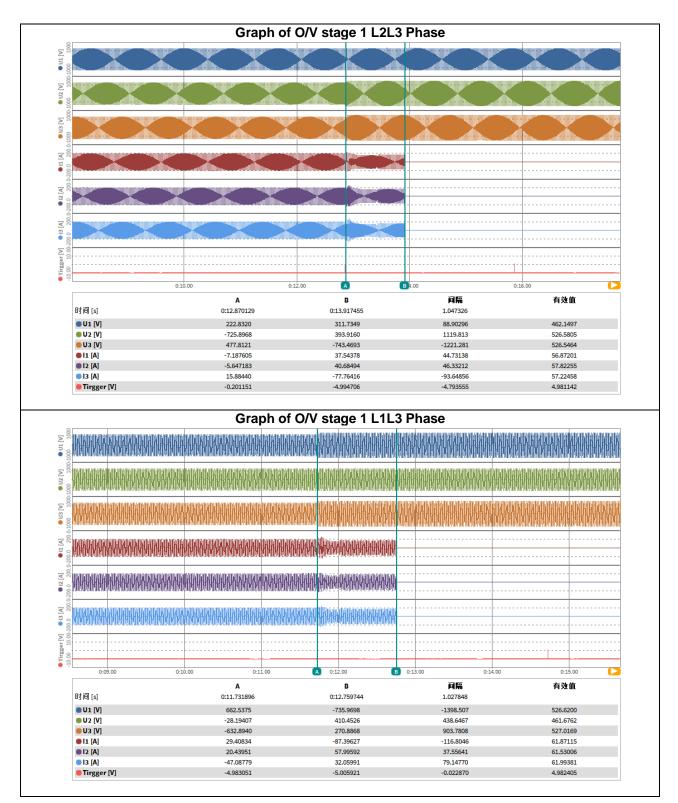
G99/1-8


Clause Requirement - Test Result - Remark

Page 111 of 247

G99/1-8

Clause Requirement - Test Result - Remark Verdict

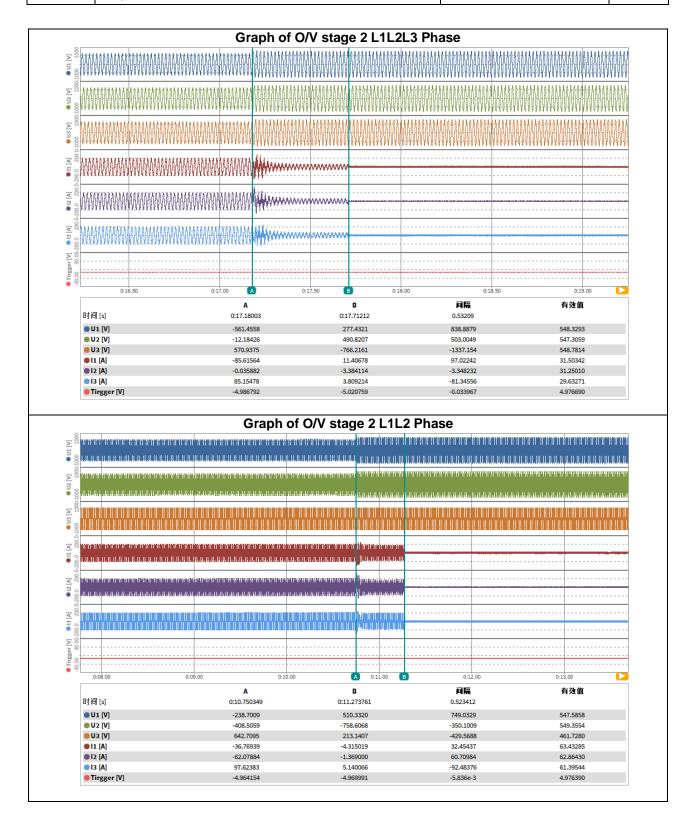


Report No.:	6134228.51V	1.1
-------------	-------------	-----

Page 112 of 247

G99/1-8

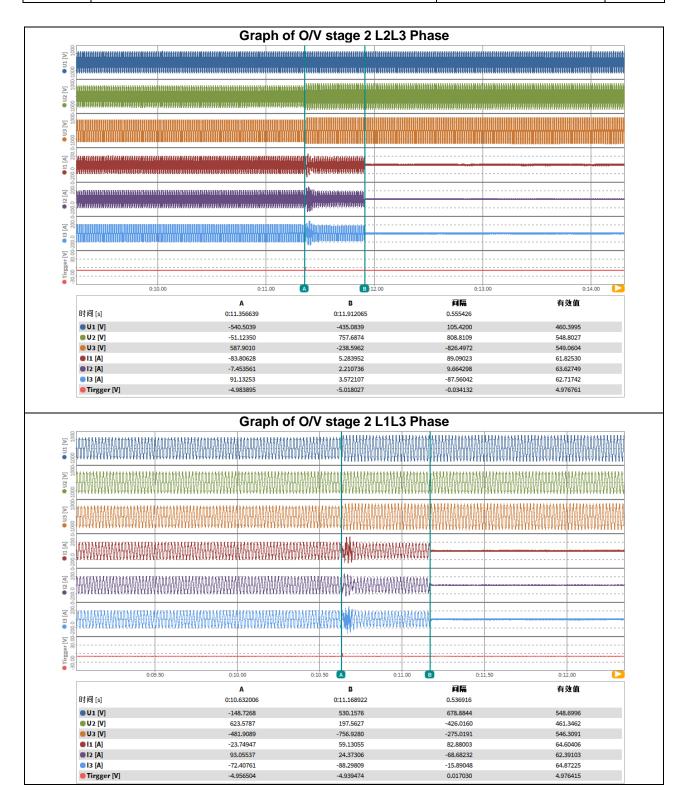
Clause Requirement - Test Result - Remark Verdict



Page 113 of 247

G99/1-8

Clause Requirement - Test Result - Remark



Page 114 of 247

G99/1-8

Clause Requirement - Test Result - Remark Verdict

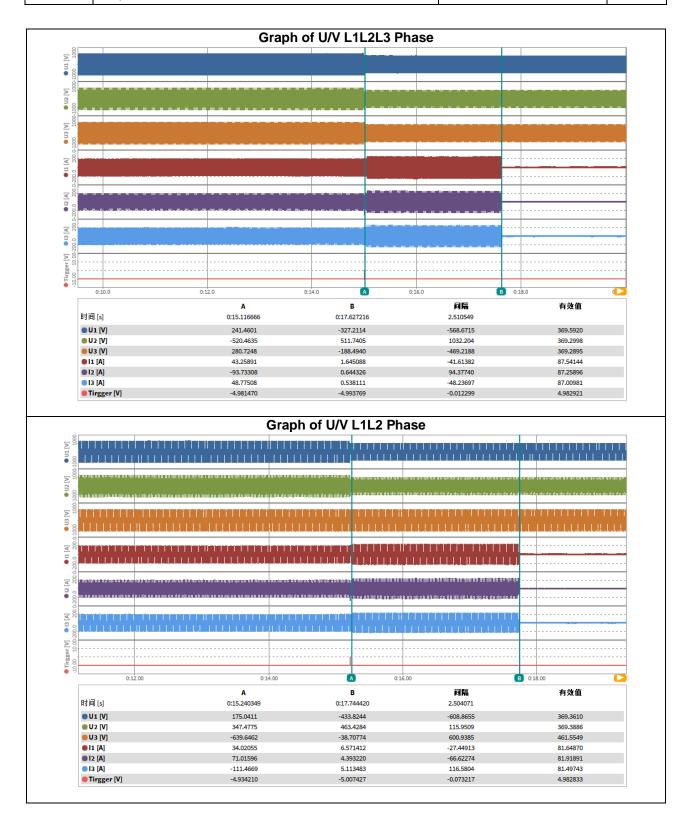
Page 115 of 247

G99/1-8

Clause

Requirement - Test

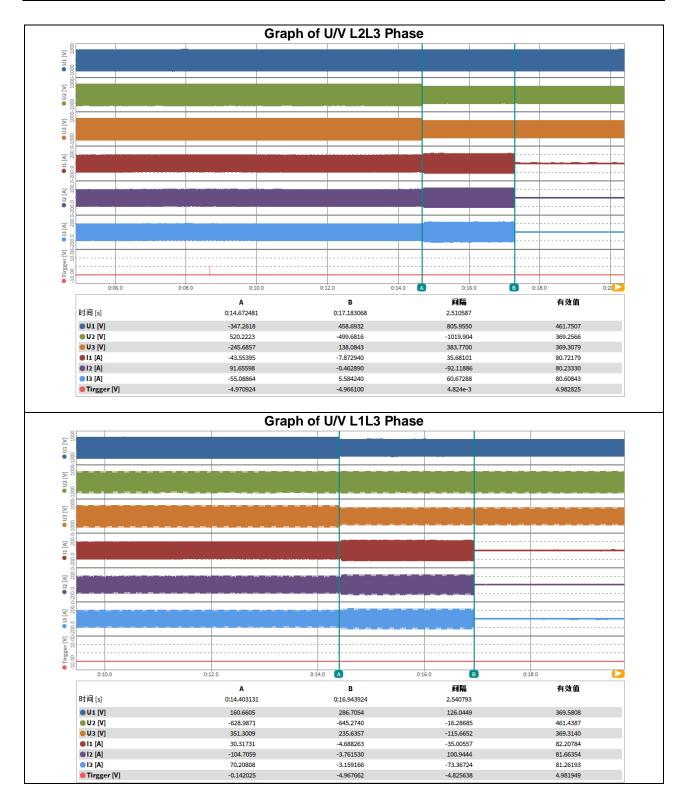
Result - Remark

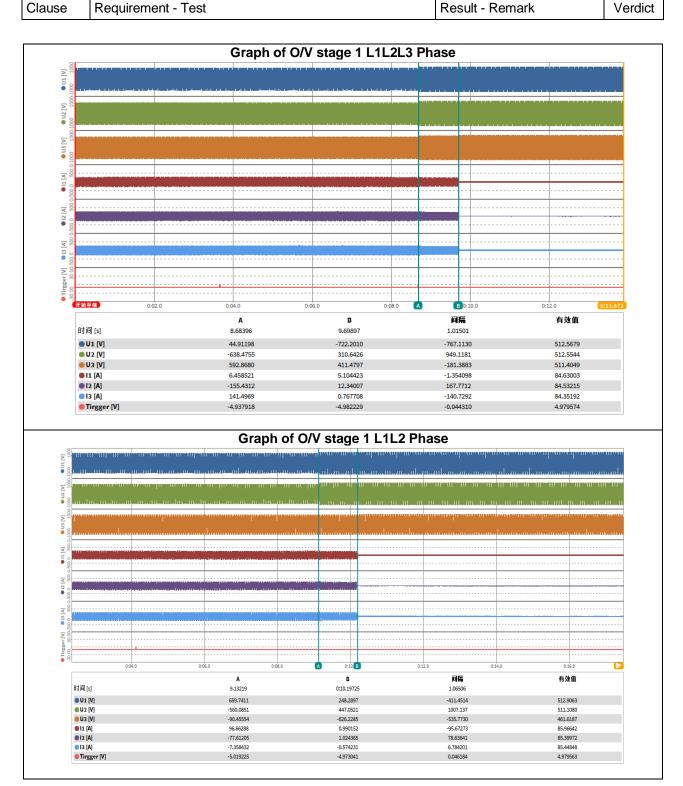

10.6.7.1 Prote	ection – Voltag	ge tests (HV P	rotection)				Р
Model: SG350	НХ						
L1L2L3 Phase	;						
Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm	no trip
U/V	0.8 pu	2.5 s	639.62 V	2.510 s	654 V 5.0 s	No trip	
					626 V 2.45 s	No trip	
O/V stage 1	1.10 pu	1.0 s	886.80 V	1.015 s	865.5 V 5.0 s	No trip	
O/V stage 2	1.13 pu	0.5 s	903.08 V	0.550 s	889.5V 0.95 s	No trip	
					918.5 V 0.45 s	No trip	
L1-L2 Phase							
Function	Set	ting	Trip	test	"No trij	o tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm	no trip
U/V	0.8 pu	2.5 s	639.51 V	2.504 s	654 V 5.0 s	No	trip
					626 V 2.45 s	No	trip
O/V stage 1	1.10 pu	1.0 s	887.10 V	1.065 s	865.5 V 5.0 s	No	trip
O/V stage 2	1.13 pu	0.5 s	906.72 V	0.539 s	889.5V 0.95 s	No	trip
					918.5 V 0.45 s	No	trip
L2-L3 Phase							
Function	Set	ting	Trip	test	"No tri	o tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm	no trip
U/V	0.8 pu	2.5 s	639.28 V	2.510 s	654 V 5.0 s	No	trip
					626 V 2.45 s	No	trip
O/V stage 1	1.10 pu	1.0 s	886.90 V	1.056 s	865.5 V 5.0 s	No	trip
O/V stage 2	1.13 pu	0.5 s	906.85 V	0.581 s	889.5V 0.95 s	No	trip

				Page 116 of 2	247		Report No.:	61342	28.51V1.1
				G99/1-8					
Clause	Rec	quirement - Tes	st			Re	sult - Remark		Verdict
							918.5 V 0.45 s	N	o trip
L3-L1 Pha	se								
Function	n	Set	ting	Trip	test		"No trip	o tests"	
		Voltage	Time delay	Voltage	Time dela	ay	Voltage /time	Confir	m no trip
U/V		0.8 pu	2.5 s	639.63 V	2.540 s		654 V 5.0 s	N	o trip
							626 V 2.45 s	N	o trip
O/V stage	e 1	1.10 pu	1.0 s	887.06 V	1.039 s		865.5 V 5.0 s	N	o trip
O/V stage	e 2	1.13 pu	0.5 s	903.22 V	0.553 s		889.5V 0.95 s	N	o trip
							918.5 V 0.45 s	N	o trip

Page 117 of 247

G99/1-8


Clause Requirement - Test Result - Remark


Page 118 of 247

G99/1-8

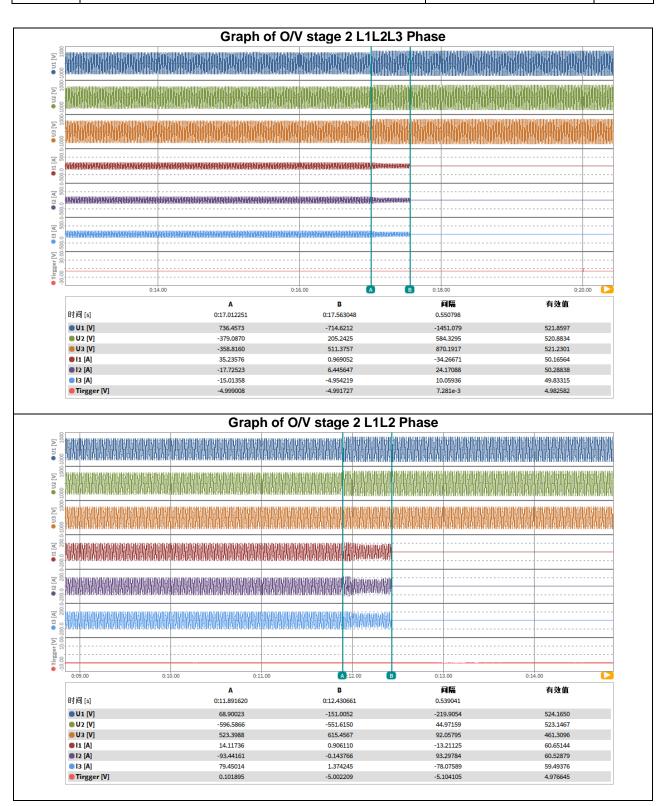
Clause Requirement - Test Result - Remark Verdict

Page 119 of 247 G99/1-8

Page 120 of 247

G99/1-8

Clause **Requirement - Test**

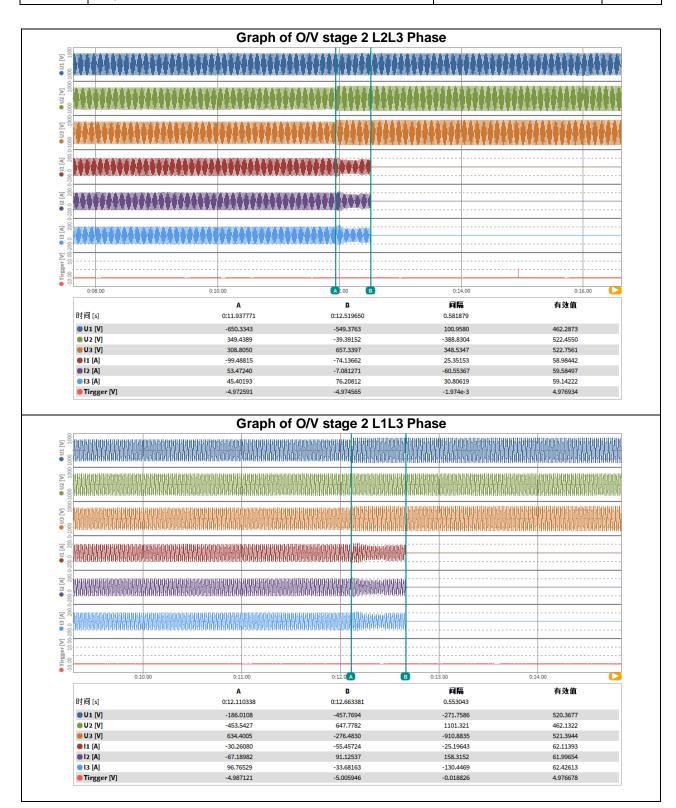


Page 121 of 247 F

Verdict

G99/1-8

Clause Requirement - Test Result - Remark



Page 122 of 247

G99/1-8

Clause Requirement - Test

Result - Remark

Page 12	23 of	247
---------	-------	-----

G99/1-8

Clause

Requirement - Test

Result - Remark

Verdict

Ρ

9.6 Protection – Loss of Mains test

These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

For test condition A, EUT output = 100 % P_n, test condition B, EUT output = 50 % to 66 % P_n, and test condition C, EUT output = 25 % to 33 % P_n.

Model: SG350HX

The following sub set of tests should be recorded in the following table.

Test and	Power	33% -5% Q	66% -5% Q		100% -5% P	33% +5% Q		66% +5% Q	100% +5% P
	lance	Test 22	Test 1	2	Test 5	Test 31		Test 21	Test 10
Trip f Limi 0.5s	t is	89 ms	99 ms		184 ms	92 ms		100 ms	179 ms
No.	P _{E∪T} ^{a)} (% of EUT rating)	Reactive load (% of Q∟)	P _{AC} ^{b)} (% of nominal)	Q _{AC} of (% of nomina	time	Peut (W)	Actua Qf	al V _{DC} ^{d)}	Remarks ^{e)}
1	100	100	0	0	189	320	1	1280	/
2	66	66	0	0	147	212	1.00	1100	/
3	33	33	0	0	122	106	1.00	900	/
4	100	100	-5	-5	125	320	1.03	1280	Test A at IB
5	100	100	-5	0	169	320	1.05	1280	Test A at IB
6	100	100	-5	+5	119	320	1.08	1280	Test A at IB
7	100	100	0	-5	184	320	0.98	1280	Test A at IB
8	100	100	0	+5	179	320	1.02	1280	Test A at IB
9	100	100	+5	-5	129	320	0.93	1280	Test A at IB
10	100	100	+5	0	146	320	0.95	1280	Test A at IB
11	100	100	+5	+5	111	320	0.95	1280	Test A at IB
12	66	66	0	-5	99	212	0.98	1100	Test B at IB
13	66	66	0	-4	107	212	0.98	1100	Test B at IB
14	66	66	0	-3	114	212	0.99	1100	Test B at IB
15	66	66	0	-2	129	212	0.99	1100	Test B at IB
16	66	66	0	-1	134	212	1.01	1100	Test B at IB
17	66	66	0	+1	143	212	1.01	1100	Test B at IB
18	66	66	0	+2	129	212	1.01	1100	Test B at IB
19	66	66	0	+3	118	212	1.02	1100	Test B at IB
20	66	66	0	+4	111	212	1.02	1100	Test B at IB
21	66	66	0	+5	100	212	1.03	1100	Test B at IB
22	33	33	0	-5	89	106	0.97	900	Test B at IB
23	33	33	0	-4	98	106	0.98	900	Test C at IB
24	33	33	0	-3	105	106	0.99	900	Test C at IB

Page 124 of 247

						G99/1-8					
Claus	ie F	Requirem	nent - T	est				Result - Re	emark		Verdict
25	33	;	33	0	-2	114	106	0.99	900	Tes	t C at IB
26	33	:	33	0	-1	117	106	1.00	900	Tes	t C at IB
27	33	;	33	0	+1	118	106	1.01	900	Tes	t C at IB
28	33	:	33	0	+2	109	106	1.01	900	Tes	t C at IB
29	33	:	33	0	+3	106	106	1.02	900	Tes	t C at IB
30	33	;	33	0	+4	98	106	1.03	900	Tes	t C at IB
31	33		33	0	+5	92	106	1.03	900	Tes	t C at IB

Note:

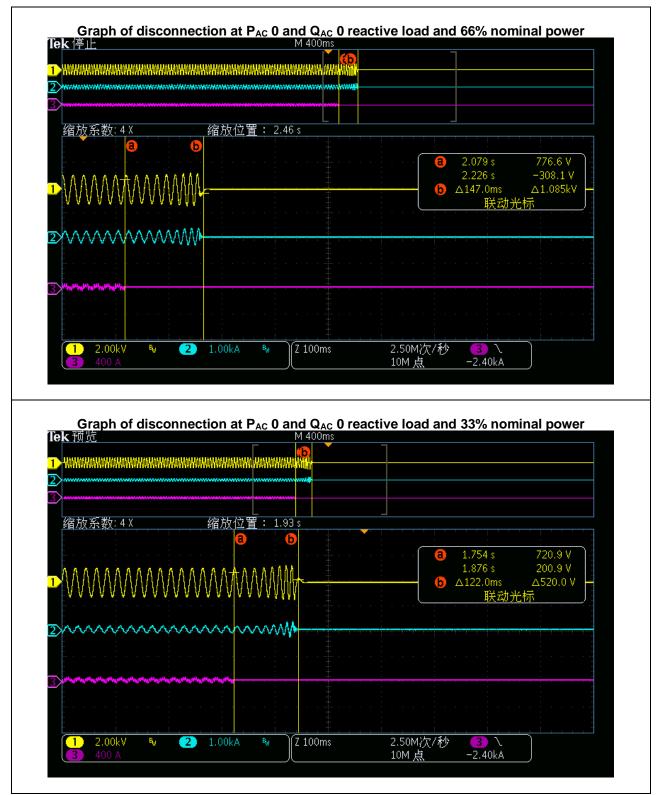
^{a)}PEUT: EUT output power.

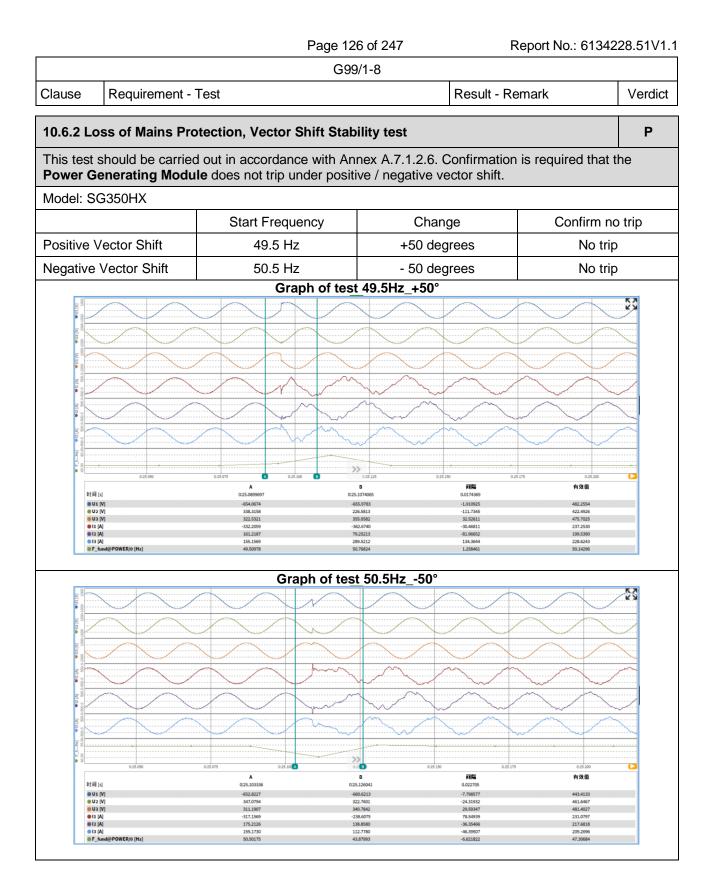
^{b)}Pac: Active power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

^{c)}Q_{ac}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

^{d)}For test condition A, > 75 % of rated input voltage range used, for test condition B, 50 % of rated input voltage range, ±10 % used, for test condition C, < 20 % of rated input voltage range used. Based on EUT rated input operating range. For example, if range is between X volts and Y volts, 75 % of range = X + 0,75 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

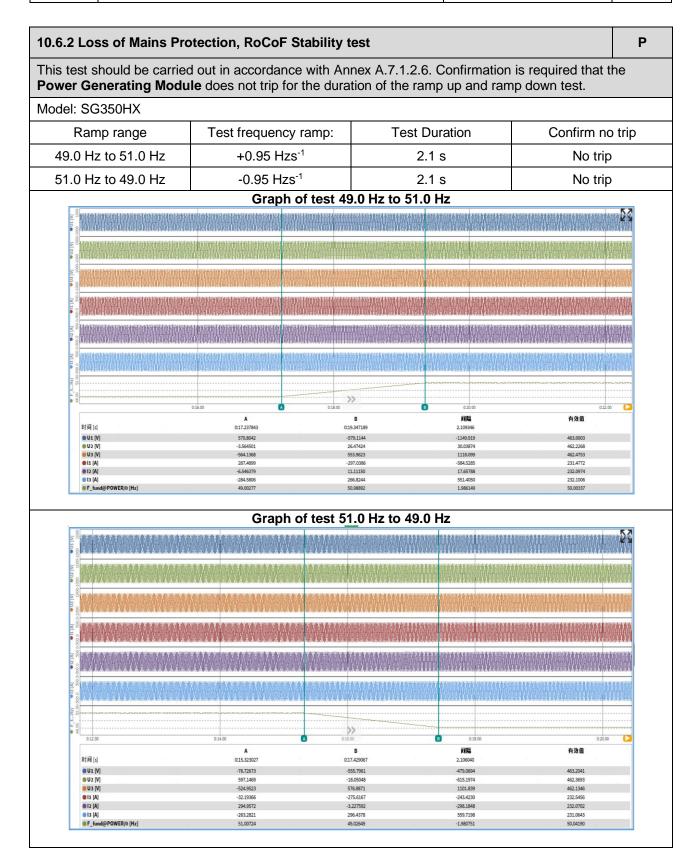
^{e)}BL: Balance condition, IB: Imbalance condition.


If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.


Graph of disconnection at PAC 0 and QAC 10 reactive load and 100% nominal power M 400m Te<u>k</u>预览 2 Martin 缩放系数:2X 缩放位置: 1.93 s 1.804 s 909.4 V 1.993 s ∆189.0ms 475.9 V 的的机机机 Z 200ms 2.50M次/秒 2 <mark>3</mark> ∖ −2.40kA 2.00kV Вω Вω 10M 点

Page 125 of 247

Clause Requirement - Test Result - Remark Verdict


Page	127	of 247	
------	-----	--------	--

G99/1-8

Clause

Requirement - Test

Result - Remark


Page	128	of 247
------	-----	--------

```
G99/1-8
```

Clause Requirement - Test

Result - Remark

Verdict

Note:

The Active Power reduction will be either between 1.0 p.u. of Registered Capacity Active Power and zero, or between 1.0 pu of Registered Capacity Active Power and Minimum Stable Operating Level. In the latter case the Generator will agree with the DNO how zero output can be achieved, including the option of using the logic interface as described in paragraph 11.1.3.1.

P_measure

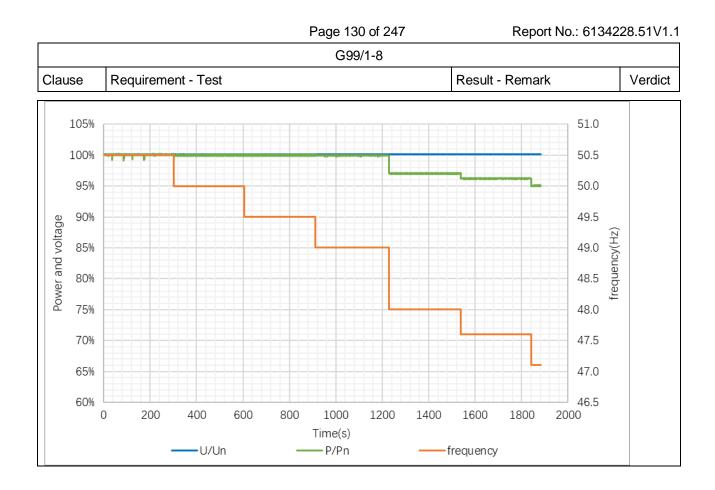
---- P_limit

11.1.3.1 By default the **DNO** logic interface will take the form of a simple binary output that can be operated by a simple switch or contactor. When the switch is closed the **Power Generating Module** can operate normally. When the switch is opened the **Power Generating Module** will reduce its **Active Power** to zero within 5 s. The signal from the **Power Generating Module** that is being switched can be either AC (maximum value 240 V) or DC (maximum value 110 V). If the **DNO** wishes to make use of the facility to cease **Active Power** output the **DNO** will agree with the **Generator** how the communication path is to be achieved.

Page 129 of 247

G99/1-8

	000/10		
Clause	Requirement - Test	Result - Remark	Verdict


12.2.3 13.2.3	TABLE: Outp	out power with falling	frequency		Р
Model	SG350HX				
Voltage	Un=800Vac				
Test	sequence	Measured Active Power Output (W)	Acceptable Active Power	Frequency (Hz)	Primary power source
50.5 Hz 1	for 5 minutes	320185.3	100% Registered Capacity	50.50	Photovoltaic array simulator
50.0 Hz for 5 minutes		319953.8	100% Registered Capacity	50.00	Photovoltaic array simulator
49.5 Hz 1	for 5 minutes	319970.2	100% Registered Capacity	49.50	Photovoltaic array simulator
49.0 Hz 1	for 5 minutes	319825.3	99% Registered Capacity	49.00	Photovoltaic array simulator
48.0 Hz for 5 minutes		310414.3	97% Registered Capacity	48.00	Photovoltaic array simulator
47.6 Hz for 5 minutes		5 minutes 307876.0 96.2% 47.60 Capacity		Photovoltaic array simulator	
47.1 H	Iz for 20 s	304089.4	95% Registered Capacity	47.10	Photovoltaic array simulator

Notes:

Each **Power Generating Module**, shall be capable of:

(a) continuously maintaining constant **Active Power** output for system frequency changes within the range 50.5 to 49.5 Hz; and

(b) (subject to the provisions of paragraph 12.2.1) maintaining its **Active Power** output at a level not lower than the figure determined by the linear relationship shown in Figure 12.1 for system frequency changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the system frequency drops to 47 Hz the **Active Power** output does not decrease by more than 5%.

Page 131 of 247

G99/1-8

Clause

Requirement - Test

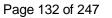
Result - Remark

Verdict

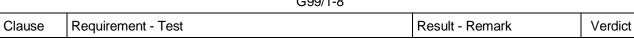
12.2.4 13.2.4 TABEL Lmited Fr B.4.5	equency Sens	itive Mode – O	ver frequency	test:	Р	
The test should be carried ou	t using the spec	ific threshold fr	equency of 50.	4 Hz and Droop	of 10%.	
Active Power response to ris are undertaken in accordance			tached if freque	ency injection te	sts Y	
Model: SG350HX						
Alternatively, simulation resul	ts should be not	ted below:				
Test sequence at Registered Capacity >80%	Measured Active Power Output (kW)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	319.75	50			-	
Step b) 50.45 Hz ±0.05 Hz	316.51	50.45	9.2		-	
Step c) 50.70 Hz ±0.10 Hz	299.16	50.7	9.2	Photovoltaic	-	
Step d) 51.15 Hz ±0.05 Hz	270.66	51.15	9.7	array	-	
Step e) 50.70 Hz ±0.10 Hz	299.21	50.7	9.2	simulator	-	
Step f) 50.45 Hz ±0.05 Hz	316.55	50.45	9.3		-	
Step g) 50.00 Hz ±0.01 Hz	319.79	50			-	
Test sequence at Registered Capacity 40- 60%	Measured Active Power Output (kW)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	161.45	50.00	-		-	
Step b) 50.45 Hz ±0.05 Hz	158.75	50.45	11.9		-	
Step c) 50.70 Hz ±0.10 Hz	142.89	50.70	10.3	Photovoltaic	-	
Step d) 51.15 Hz ±0.05 Hz	114.27	51.15	10.2	array	-	
Step e) 50.70 Hz ±0.10 Hz	142.65	50.70	10.2	simulator	-	
Step f) 50.45 Hz ±0.05 Hz	158.58	50.45	11.1		-	
Step g) 50.00 Hz ±0.01 Hz	161.46	59	-]	-	

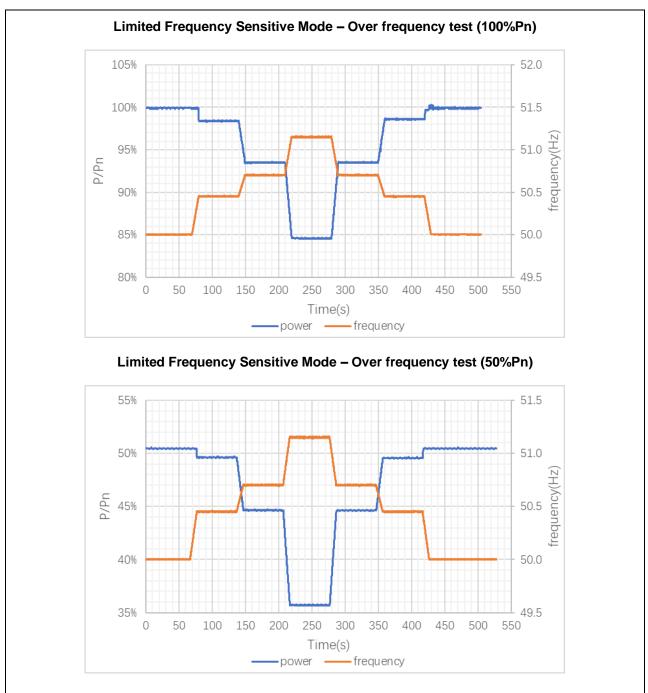
Note:

The simulation study event shall be equivalent to:


(i) a sufficiently large increase in the measured system frequency ramped over 10 s to cause a decrease in **Active Power** output in accordance with the **Droop** setting followed by

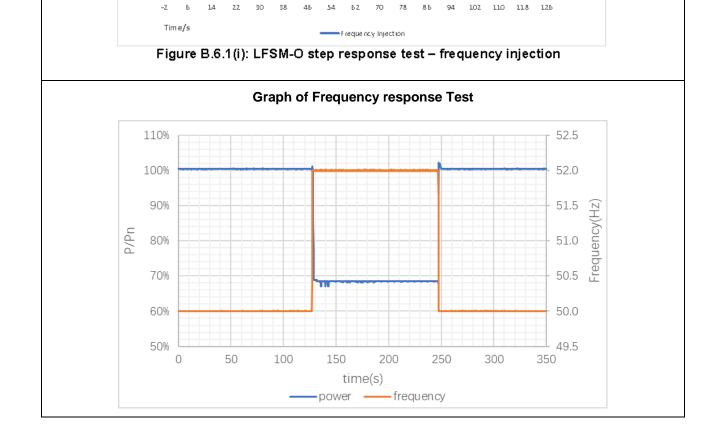
(ii) 60 s of steady state with the measured system frequency increased to the same level as in B.4.5.4 (i) as illustrated in Figure B.4.1 below


(iii) then decrease of the measured system frequency ramped over 10 s to cause an increase in **Active Power** output back to the maximum **Active Power** level followed by at least 60 s of steady output.


The allowed tolerance for the frequency measurement shall be ± 0.05 Hz. The allowed tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and -1.5%, ie a Droop less than 12.8% and greater than 8.5%.

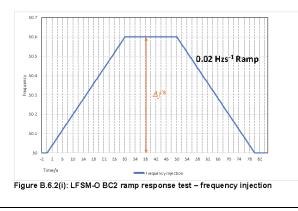
G99/1-8

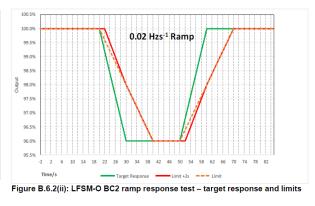


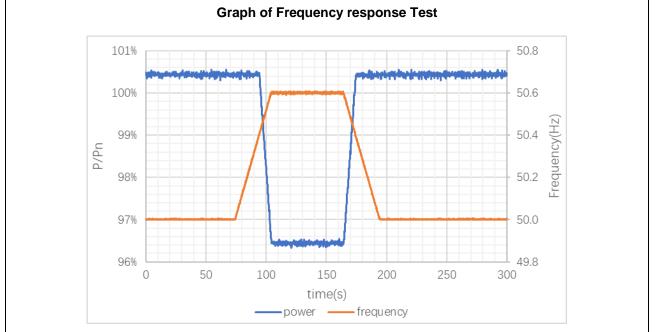
Page 133 of 247

			G99/1-8				
Clause	Clause Requirement - Test Result - Remark						
B.6.2 Frequency Response Tests Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex B.6.2. (for Type B, Type C, Type D)							
Test sec Registe Capacit		Measured Active Power Output (kW)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient	
Step a)	50.00 Hz ±0.01 Hz	321.44	50.00	-	Photovoltaic	-	
Step b) 52.00 Hz ±0.01 Hz		219.25	52.00	10.0	array simulator	Р	
Step c)	50.00 Hz ±0.01 Hz	321.29	50.00			-	
	+0. 49.5		istered Capacity (tal Generating Units no 51 51	t in service)	52.5		
	- 0. - 1		10% droop				
	P _{ref} is the reference Act output from the Power		P is related and. ΔP	is the change in A	ctive Power		
	Figure 13.2 Active in LFSM-O	Power Frequenc	y Response ca	pability when o	operating		

			Page 134 of 247	Report No.: 67	134228.51V1.
			G99/1-8		
Clause	Requiren	nent - Test		Result - Remark	Verdict
periods fr 2. The re between	rom 0 s to sponse she the green a	130 s in Figures B.6. ould commence withi and red lines), and as	Active Power response wh 1 for a step change in frequent n 2 s and the response sha s close to the green line as period esents the 0.5% s-1 specifie	ency. Il be to the left of the red l cossible when following th	line (ie
	51.5		2 Hzs ⁻¹	Step 0-60 s &	
	Asuanba., 51	<u></u> Д/*	70 s	- 130 s	
	50.5				
	50				




Page 135 of 247 Report No.: 6134228.51V1.						
		G99/1-8				
Clause	Requirement - Test		Result - Remark	Verdict		


Test sequence at Registered Capacity >80%	Measured Active Power Output (kW)	Frequency (Hz)	ΔΡ _{E60} /Pn (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	321.53	50.00	-	Photovoltaic array simulator	-
Step b) 50.60 Hz ±0.01 Hz	308.66	50.60	9.9	Simulator	Р
Step c) 50.00 Hz ±0.01 Hz	321.37	50.00	-		-

1.Initial output is 100%, droop is 10%. (20%Pn/Hz)

2.Ramp of frequency change is 0.02 Hz/s.

Page 136 of 247

Ρ

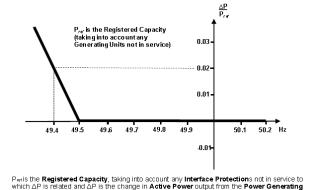
G99/1-8

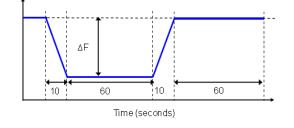
13.2.5 Limited Frequency Sensitive Mode – Under frequency (LFSM-U)

Shall be capable of increasing active power output in response to system when this falls below 49.5Hz. Droop of 10%. Annex C.7.8

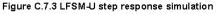
			-		
Test sequence at Registered Capacity 80% Pn	Measured Active Power Output (kW)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	258.37	50.00	-	Photovoltaic	-
Step b) 49.50 Hz ±0.01 Hz	259.05	49.50	-	array simulator	-
Step c) 49.40 Hz ±0.01 Hz	265.21	49.40	9.4		-
Step d) 48.50 Hz ±0.01 Hz	321.87	48.50	10.1		-
Step e) 49.40 Hz ±0.01 Hz	265.03	49.40	9.6		-
Step f) 49.50 Hz ±0.01 Hz	258.76	49.50	-		-
Step g) 50.00 Hz ±0.01 Hz	258.27	50.00	-		-

Notes:

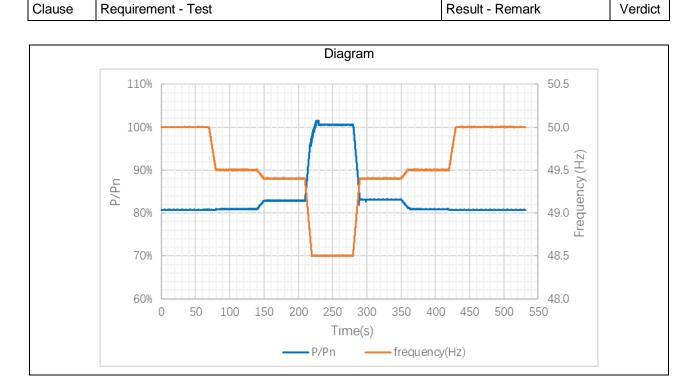

1. Droop is 10%.


2. In LFSM-U Mode the inverter shall be capable of providing a power increase up to its Registered Capacity.

3. A sufficiently large reduction in the measured system frequency ramped over 10 s.


4. Then increase of the measured system frequency ramped over 10 s to cause a reduction in Active Power output back to the original Active Power level followed by at least 60 s of steady output.

Frequency (Hz)



 P_{ref} is the **Registered Capacity**, taking into account any **Interface Protections** not in service to which $\Delta\mathsf{P}$ is related and $\Delta\mathsf{P}$ is the change in **Active Power** output from the **Power Generating Module**. The **Power Generating Not**ule has to provide a positive **Active Power** output change with a **Droop** of 10% or less based on P_{ref} .

	Page 137 of 247 Report No.: 6134228.51			
	G99/1-8			
Requirement - Test		Result - Remark	Verdict	

Page 138 of 247

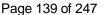
- Remark

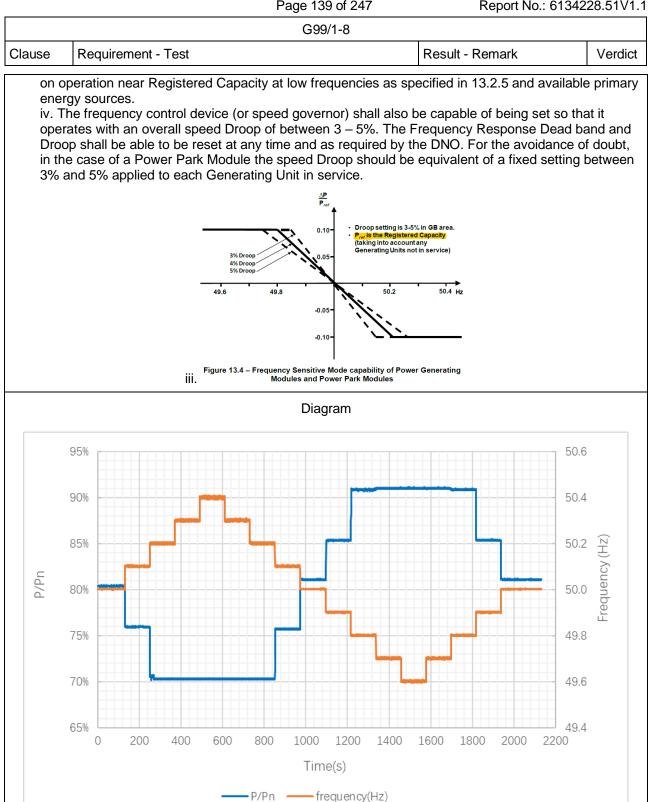
G99/1-8

Clause Requirement - Test Resu	Clause	Requirement - Test Re	sult
--------------------------------	--------	-----------------------	------

Verdict

13.2.6 Frequency Sensitive Mode – (FSM) (for Type C, Type D)							
The test should be carried out using the specific threshold frequency of 50Hz and Droop of 4%. (50%Pn/Hz)							
Test sequence start at 80% Registered Capacity	Measured Active Power Output (kW)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient		
Step a) 50.00 Hz ±0.01 Hz	257.25	50.00	-	Photovoltaic	-		
Step b) 50.10 Hz ±0.01 Hz	243.11	50.10	4.5	array simulator	Р		
Step c) 50.20 Hz ±0.01 Hz	224.94	50.20	4.0		Р		
Step d) 50.30 Hz ±0.01 Hz	224.89	50.30	-		-		
Step e) 50.40 Hz ±0.01 Hz	224.90	50.40	-		-		
Step f) 50.30 Hz ±0.01 Hz	224.98	50.30	-		-		
Step g) 50.20 Hz ±0.01 Hz	224.95	50.20	4.0		Р		
Step h) 50.10 Hz ±0.01 Hz	242.20	50.10	4.3		Р		
Step i) 50.00 Hz ±0.01 Hz	259.49	50.00	-		-		
Step j) 49.90 Hz ±0.01 Hz	273.15	49.90	4.0		Р		
Step k) 49.80 Hz ±0.01 Hz	290.56	49.80	3.8		Р		
Step I) 49.70 Hz ±0.01 Hz	291.19	49.70	-		-		
Step m) 49.60 Hz ±0.01 Hz	291.24	49.60	-		-		
Step n) 49.70 Hz ±0.01 Hz	291.13	49.70	-		-		
Step o) 49.80 Hz ±0.01 Hz	290.71	49.80	3.8		Р		
Step p) 49.90 Hz ±0.01 Hz	273.22	49.90	4.0		Р		
Step q) 50.00 Hz ±0.01 Hz	259.49	50.00	-]	-		


1. Power Generating Modules shall be capable of providing Active Power Frequency Response in accordance with the performance characteristic shown in Figure 13.4 and parameters in Table 13.1.


2. In satisfying the performance requirements specified in paragraph 13.2.6.1 Generators in respect of each Power Generating Module should be aware: -

i. in the case of over frequency, the Active Power Frequency Response is limited by the Minimum Stable Operating Level,

ii. in the case of under frequency, the Active Power Frequency Response is limited by the Registered Capacity,

ii.the actual delivery of Active Power Frequency Response depends on the operating and ambient conditions of the Power Generating Module when this response is triggered, in particular limitations

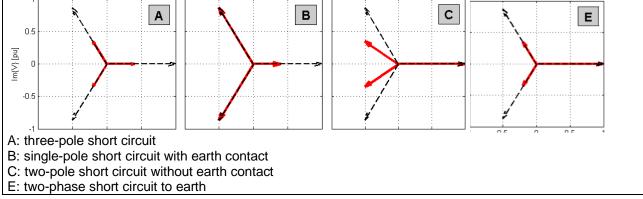
Page 140 of 247

Report No.: 6134228.51V1.1

G99/1-8

Clause

Requirement - Test


Result - Remark

12.3, 1 13.3, 1 C.7.	13.6 (For Type B, Type C, Type D)						
Test no.	U/Un [pu]	No. of phases shorted	Output power level	Fault duration (ms)	Set Q before fault [Q/Pn]	Limit Percent of Injected current after 60 ms [pu]	Limit Percent of Injected current after 120 ms [pu]
1.1.0		Three phase	P=0	140	0	N/A	N/A
1.1.1		symetric	$0,1P_n \leq P \leq 0,3P_n$	140	0	≥0.65	≥1.0
1.1.2		fault	$P \ge 0.9P_n$	140	0	≥0.65	≥1.0
1.2.0			P=0	140	0	N/A	N/A
1.2.1		One phase asymetric fault	$0,1P_n \le P \le 0,3P_n$	140	0	≥0.65	≥1.0
1.2.2	0 * Type D		$P \ge 0,9P_n$	140	0	≥0.65	≥1.0
1.3.0	(>110 kV)		P=0	140	0	N/A	N/A
1.3.1		Phase to phase fault	$0,1P_n \leq P \leq 0,3P_n$	140	0	≥0.65	≥1.0
1.3.2			$P \ge 0,9P_n$	140	0	≥0.65	≥1.0
1.4.0			P=0	140	0	N/A	N/A
1.4.1		Two phase to earth fault	$0,1P_n \leq P \leq 0,3P_n$	140	0	≥0.65	≥1.0
1.4.2			$P \ge 0,9P_n$	140	0	≥0.65	≥1.0
2.1.0		Three phase symetric	P=0	383	0	N/A	N/A
2.1.1			$0,1P_n \leq P \leq 0,3P_n$	383	0	≥0.65	≥1.0
2.1.2		fault	$P \ge 0,9P_n$	383	0	≥0.65	≥1.0
2.2.0		One phase asymetric fault	P=0	383	0	N/A	N/A
2.2.1			$0,1P_n \leq P \leq 0,3P_n$	383	0	≥0.65	≥1.0
2.2.2	0.40		$P \ge 0,9P_n$	383	0	≥0.65	≥1.0
2.3.0	0.10		P=0	383	0	N/A	N/A
2.3.1		Phase to phase fault	$0,1P_n \leq P \leq 0,3P_n$	383	0	≥0.65	≥1.0
2.3.2		phase radii	$P \ge 0.9P_n$	383	0	≥0.65	≥1.0
2.4.0			P=0	383	0	N/A	N/A
2.4.1		Two phase to earth fault	$0,1P_n \leq P \leq 0,3P_n$	383	0	≥0.65	≥1.0
2.4.2		Cartinidal	$P \ge 0,9P_n$	383	0	≥0.65	≥1.0
3.1.0		Three phase	P=0	1352	0	N/A	N/A
3.1.1		symetric	$0,1P_n \leq P \leq 0,3P_n$	1352	0	≥0.65	≥1.0
3.1.2	0.50	fault	$P \ge 0,9P_n$	1352	0	≥0.65	≥1.0
3.2.0	0.50		P=0	1352	0	N/A	N/A
3.2.1		One phase asymetric fault	$0,1P_n \leq P \leq 0,3P_n$	1352	0	≥0.65	≥1.0
3.2.2			$P \ge 0,9P_n$	1352	0	≥0.65	≥1.0

Page 141 of 247

G99/1-8

Clause	Require	Requirement - Test Result - Remark							
12.3, 12.6 13.3, 13.6 C.7.5 Fault Ride Through and Fast Fault Injection (For Type B, Type C, Type D)									
3.3.0			P=0	1352	0	N/A	N/A		
3.3.1		Phase to phase fault	$0,1P_n \leq P \leq 0,3P_n$	1352	0	≥0.65	≥1.0		
3.3.2		priaceraan	$P \ge 0.9P_n$	1352	0	≥0.65	≥1.0		
3.4.0			P=0	1352	0	N/A	N/A		
3.4.1		Two phase to earth fault	$0,1P_n \le P \le 0,3P_n$	1352	0	≥0.65	≥1.0		
3.4.2		earthadit	$P \ge 0.9P_n$	1352	0	≥0.65	≥1.0		
4.1.0		Three phase	<i>P=0</i>	2200	0	N/A	N/A		
4.1.1		symetric	$0,1P_n \le P \le 0,3P_n$	2200	0	≥0.65	≥1.0		
4.1.2		fault	$P \ge 0.9P_n$	2200	0	≥0.65	≥1.0		
4.2.0		One phase asymetric fault	P=0	2200	0	N/A	N/A		
4.2.1			$0,1P_n \leq P \leq 0,3P_n$	2200	0	≥0.65	≥1.0		
4.2.2	0.05		$P \ge 0.9P_n$	2200	0	≥0.65	≥1.0		
4.3.0	0.85		P=0	2200	0	N/A	N/A		
4.3.1		Phase to phase fault	$0,1P_n \leq P \leq 0,3P_n$	2200	0	≥0.65	≥1.0		
4.3.2		phase raun	$P \ge 0.9P_n$	2200	0	≥0.65	≥1.0		
4.4.0			<i>P=0</i>	2200	0	N/A	N/A		
4.4.1		Two phase to earth fault	$0,1P_n \leq P \leq 0,3P_n$	2200	0	≥0.65	≥1.0		
4.4.2		Cartiniadit	$P \ge 0.9P_n$	2200	0	≥0.65	≥1.0		
Note: Addtiona	al test cond	dition only for Typ	e D Power Generating	g Modules	above 110	kV.			

Γ

Page 142 of 247

Report No.: 6134228.51V1.1

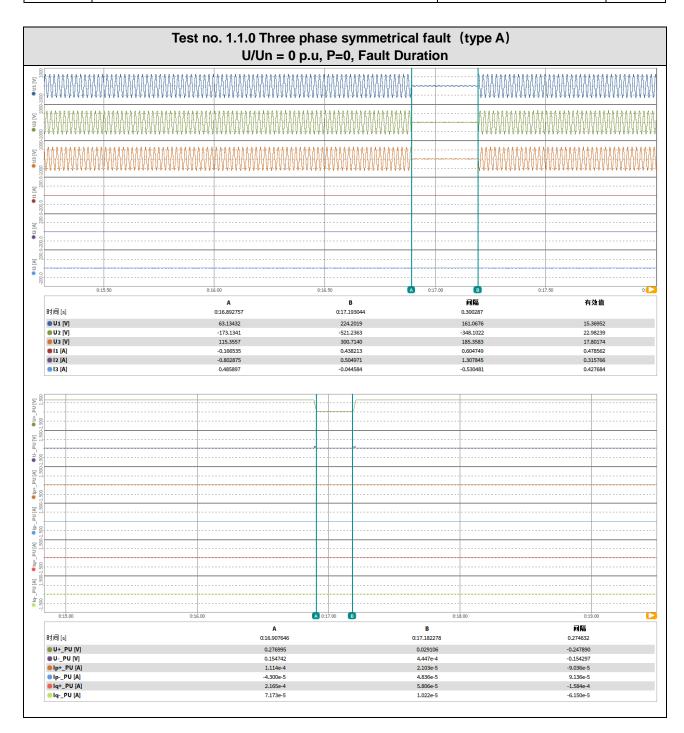
```
G99/1-8
```

Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measur	ed value
	0	Test number				1.1.1	1.1.2
	1		Phase 1			462.7	463.9
	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	460.3	460.3
	3		Phase 3			462.1	461.2
Before	4		Phase 1			47.1	233.7
dip < t ₁	5	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	46.8	231.5
	6		Phase 3	1001110		47.0	232.0
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.0
	8	Active power	total	100ms	W	65008	322003
	9	Desetive	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.01	0.01
	10	 Reactive power 	total	100ms	var	2341	5197
	11		Phase 1			18.1	18.3
	12	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	19.4	19.5
	13		Phase 3	-20115		18.6	18.6
	14		Phase 1		Arms	240.4	239.4
	15	Current	Phase 2	t ₁ +100ms to t ₂ -20ms		241.3	241.4
	16		Phase 3	-20115		239.6	240.0
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	363.9	362
During dip t ₁ to t ₂	18		Positive sequence		p.u.	0.038	0.038
	19	Reactive power	total		var	13277.5	13303
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	1.2	1.005
	21	A	Positive sequence	-20ms	p.u.	0.006	0.01
	22	Active power	total		W	2004	3110
	23	Active current	Positive sequence		p.u.	0.17	0.25
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.97	0.97
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	1.00	1.00
	26		Phase 1			462.8	461.2
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	462.8	461.5
	28		Phase 3			460.0	462.9
	29		Phase 1			45.7	232.3
-	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	45.9	232.1
After	31	-	Phase 3	-		45.5	232.8
dip > t ₂	32		Positive sequence		p.u.	0.20	1.0
	33	 Active power 	total	- <i>t</i> ₂ +1s	W	65036	321980
	34		Positive sequence		p.u.	0.01	0.01
	35	 Reactive power 	total	- t ₂ +1s	Var	2570	7164.8
	36	Active power recovery time	Positive sequence		ms	98.7	499.2

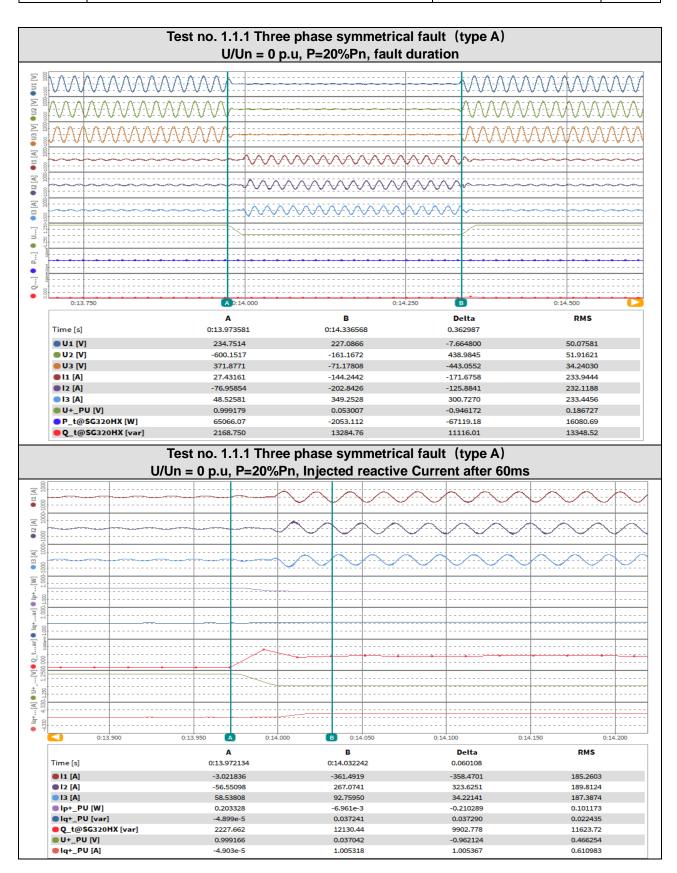

Page 143 of 247

G99/1-8

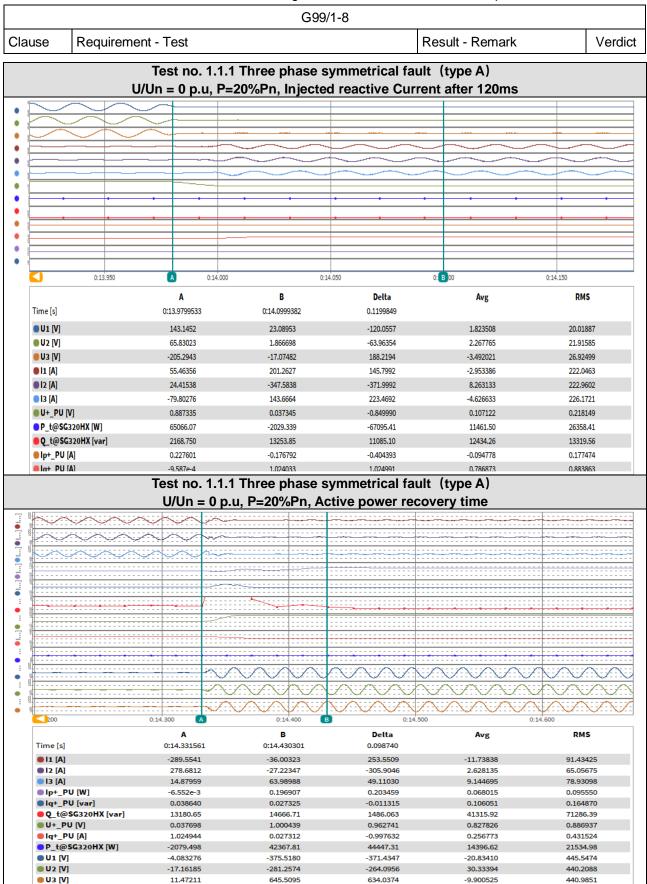
Clause

Requirement - Test

Result - Remark


Page 144 of 247

G99/1-8


Clause

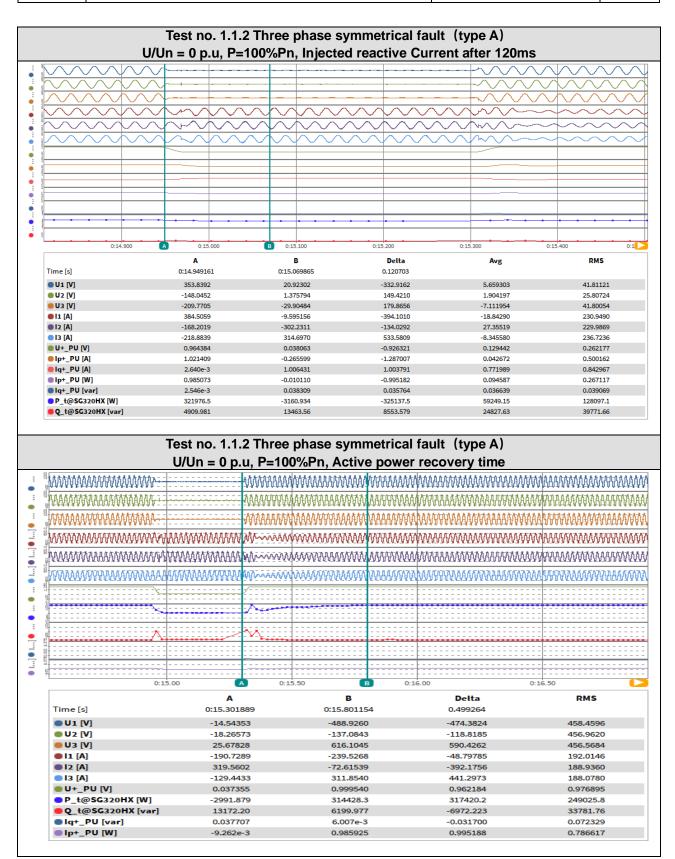
Requirement - Test

Result - Remark

Page 145 of 247

Page 140 01 247	Page	146 of 247	
-----------------	------	------------	--

Clause Requirement - Test


Result - Remark

	Test no. 1.1.2	Three phase sy	mmetrical f	ault type A)		
		0 p.u, P=100%				
WWWWWWW	ኣሉላልሕልሉላልሉ	ΔΑΝ.	A	<u> </u>	www.www.www	
8						
TATATATATATATA	VIAMAVANA	AM alana	V	IN WAY AN	AVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
WWWWWWWWW				Amm		
4						
ALAYAYAYAYAYAYAYA	eva na kana ka	AAAAAAAAAAAA	A A YA A	Amarak	MANAANANA MANAN	
				A		
		<u> </u>				
00010						
0:14.50	0:14.75	A 0:15.00	0:15.25 B	0:15.5	0 0:15.75	
	Α	в		Delta	RMS	
Time [s]	0:14.944330	0:15.30		0.356912		
 U1 [V] U2 [V] 	100.3681 -609.1941	-23.70		-124.0722 612.5801	49.60590 58.12070	
• U2 [V]	512.8256	18.60		-494.2210	40.34894	
• I1 [A]	49.81196	-131.9	903	-181.8023	237.4981	
• 12 [A]	-304.7909	304.7		609.5802	238.0825	
 I3 [A] U+_PU [V] 	256.2074 0.999660	-174.7		-430.9541 -0.962304	238.0443 0.187982	
P_t@SG320HX [W]	321976.5	-2991		-324968.4	87536.21	
@Q _t@ SG 320 HX [var]	4909.981	1317		8262.219	28838.98	
Iq+_PU [var] Ip+_PU [W]	-5.139e-4 1.006042	0.037		0.038221	0.037929 0.188656	
-	Test no. 1.1.2 T				0.100000	
U/L	Jn = 0 p.u, P=10	0%Pn, Injected	d reactive C	urrent after 60)ms	
		00%Pn, Injected	I reactive C		Dms	
		00%Pn, Injected	orits.200		0.15.400 0.1	
0.14 500		0.15.100 B	0.15.200 Delta	0.15.300	0.15.400 0.1 RMS	
0.14.500 A	0.115 B A 0.114.9466642 408.6880 -443.3900	0.15.00 0.15.00 0.15.0079480 3.0.74515 -12.91359	0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200	0.15.300 0.15.300 0.15.300 0.15.300	0.15.400 0.1 RMS 94.48495 66.92044	
0.14.500 C	0.15 B A 0.14.9469642 408.6880 -443.3900 41.82661	0.15.100 B 0.15.0079480 30.74515 -1.251359 -15.89453	0.15.200 Delta 0.0609838 -377,9428 430.4765 -57.72114	0:15.300 Avg 24.90554 -8.197850 -16.28727	0.15.400 0.1 RMS 94.48495 66.92044 60.25056	
0.14.500 A	0.115 B A 0.114.9466642 408.6880 -443.3900	0.15.00 0.15.00 0.15.0079480 3.0.74515 -12.91359	0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.15.200	0.15.300 0.15.300 0.15.300 0.15.300	0.15.400 0.1 0.15.400 0.1 RMS 94,48495 66,92044 60,25056 229,0508	
0.14.900 A	0.15 G A 0.14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841	0.15.100 0.15.100 0.15.0079480 30.74515 -12.91359 -15.89453 -206.6380 -140.9805 348.2779	0.15.200 0.15.200 0.15.200 0.15.200 0.0609838 0.0609838 0.0609838 0.0609838 0.0609838 0.0609838 0.0609838 0.0609838 0.05098 0.0509838 0.05098	0.15.300 0.15.30000000000000000000000000000000000	0.15.400 0.1 RMS 94.48495 66.92044 60.25056 229.0508 220.2983 225.9938	
0.14.500 Time [s] 0.14.500 Time [s] 0.14.500 0.14.500 Time [s] 0.14.500 0.14.5	0.15 B A 0:14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841 0.991614	0.15.100 B 0.15.0079480 30.74515 -1.2.91359 -15.89453 -206.6380 -140.9805 344.2779 0.038887	0.15.200 Delta 0.0609838 -377,9428 430.4765 -57.72114 -518.3889 178.8049 336.8995 -0.952727	0.15.300 0.15.300 Avg 24.90554 -8.197850 -16.28727 -20.21695 50.34893 -28.8939 0.248113	0.15.400 0.1 RMS 94.48495 66.92044 60.25056 229.0508 220.2983 225.9938 0.406382	
0:14:500 (A Time [s] U1 [V] U2 [V] U3 [V] U3 [V] U3 [V] U3 [A] U4 -PU [V] U4 -PU [V] U5 [P+-PU [A]	0.15 B A 0.15 B A 0.14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841 0.991614 1.009794	0.15.0079480 30.74515 -12.91359 -15.89453 -206.6380 -140.9805 348.2779 0.038887 -0.288655	0.15.200 Detta 0.0609838 -377,9428 430,4765 -57.72114 -518.3889 178.8049 336.8995 -0.952727 -1.298449	0.15.300 Avg 24.90554 -16.28727 -20.21695 50.34693 -29.89309 0.284131 0.382524	0.15.400 0.1 0.15.400 0.1 RMS 94,48495 66.92044 60.25056 229.0508 220.2983 225.9938 0.406382 0.674224	
0.14.500 Time [s] 0.14.500 Time [s] 0.14.500 0.14.500 Time [s] 0.14.500 0.14.5	0.15 B A 0:14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841 0.991614	0.15.100 B 0.15.0079480 30.74515 -1.2.91359 -15.89453 -206.6380 -140.9805 344.2779 0.038887	0.15.200 Delta 0.0609838 -377,9428 430.4765 -57.72114 -518.3889 178.8049 336.8995 -0.952727	0.15.300 0.15.300 Avg 24.90554 -8.197850 -16.28727 -20.21695 50.34893 -28.8939 0.248113	0:15:400 0:1 RMS 94,48495 66.92044 60.25056 229.0508 220.2983 225.9938 0.406382 0.674224 0.622483	
0:14:500 A	0.15 B A 0:14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841 0.991614 1.009794 7.079e-5 1.001369 7.020e-5	0.15.100 B 0.15.0079480 30.74515 -1.2.91359 -15.89453 -206.6380 -140.9805 348.2779 0.038887 -0.288655 0.974194 -0.011226 0.037885	0.15.200 Delta 0.0609838 -377.9428 430.4765 -57.72114 -518.3889 178.8049 336.8995 -0.952727 -1.298449 0.974123 -1.012594 0.037815	0.15.300 0.25.300 0.24.15.15.15.15.15.15.15.15.15.15.15.15.15.	0.15.400 0.1 RMS 94.48495 66.92044 60.25056 229.0508 220.2983 225.9938 0.406382 0.674224 0.622483 0.415258 0.038895	
0.14.900 (A	0.15 G A 0.14.9469642 408.6880 -443.3900 41.82661 311.7509 -319.7854 11.37841 0.991614 1.099794 7.079e-5 1.001369	0.15.100 0.15.100 0.15.0079480 30.74515 -12.91359 -15.89453 -206.6380 -140.9805 348.2779 0.038887 -0.288655 0.974194 -0.011226	0.15.200 0.15.200 0.15.200 0.15.200 0.15.200 0.0509338 -377.9428 430.4765 -57.72114 -518.3889 178.3889 178.3889 178.3889 178.3889 178.3889 179.428 10.052727 -1.298449 0.9527 -1.298449 0.9527 -1.298449 0.9527 -1.298448 0.2027 -1.298448 0.2027 -1.298448 0.2027 -1.298448 0.2027 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.298 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2984 -1.2	0.15.300 0.15.300 0.15.300 0.15.300 0.15.300 0.15.300 0.15.300 0.16.28727 -20.21695 50.34933 -29.89303 0.248113 0.382524 0.28536 0.28536	0.15.400 0.1 0.15.400 0.1 RMS 94,48495 66,92044 60,25056 229,0508 220,2983 225,9938 0.406382 0.674224 0.622483 0.415258 0.038895 169433.3	

Clause

Requirement - Test

Result - Remark

Page 148 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				1.2.1	1.2.1
	1		Phase 1			461.1	462
	2	Voltage	Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	460.3	460
	3		Phase 3			463.1	462
	4		Phase 1			47.0	233
Before dip < t ₁	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	46.9	232
	6		Phase 3	1001113		47.1	232
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.0
	8	Active power	total	100ms	W	65010	3212948
	9		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.02	0.01
	10	Reactive power	total	100ms	var	2542	6273
	11		Phase 1			23.2	19.2
	12	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	463.0	460.1
	13		Phase 3	-20115		460.7	462.1
	14		Phase 1			241.2	240.1
	15	Current	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	114.6	117.0
	16		Phase 3			127.6	123.9
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	296	300
During dip t1 to t2	18		Positive sequence		p.u.	0.37	0.03
	19	Reactive power	total		var	117790	7368
-	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.54	0.04
	21			-20ms	p.u.	0.04	0.36
	22				W	10800	117153
	23	Active current	Positive sequence		p.u.	0.06	0.53
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.52	0.52
-	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.54	0.52
	26		Phase 1			460.3	461.6
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.9	462.8
	28		Phase 3			463.0	460.9
	29		Phase 1			45.5	232.9
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	45.7	233.2
After	31		Phase 3	1		45.7	232.1
dip > t ₂	32	A atting	Positive sequence	(. 4	p.u.	0.20	1.0
	33	Active power	total	- <i>t</i> ₂ +1s	W	61848	322354
[34	Depative	Positive sequence	4 4 -	p.u.	0.02	0.01
	35	Reactive power	total	- t ₂ +1s	Var	8960	7059
	36	Active power recovery time	Positive sequence		ms	959	310

Report No.: 6134228.51V1.1

Page 149 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

	Test no. 1.2.0 single-pole short circuit with earth (type B) U/Un = 0 p.u, P=0, Fault Duration						
	┥╡┝╞╞╼┶┝╞╤╼┶┝┧╕┩┪╕╡ ┙╡╕╷┎╌┷┑╘╷╌╵┥┱╛╸ ┙╡╕╷┎╌┷┑╘╷╌╵┥┱╛╸						
			ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ ĂĂĂĂ				
			······				
2000 2000 2000 2000 2000 2000 2000 200			······	· · · · · · · · · · · · · · · · · · ·			
0.0007 0.0007-							
时间 [s]	0:	15.00 A 0:15.796169	 0:16.0 0:1 	0 B B 16.087704	0:17.00 间隔 0.291535	有效值	
• U1 [V]		14.92608		17.81523	-32.74131	13.67046	
● U2 [V]		-625.7248		458.7238	1084.449	462.1366	
● U3 [V] ● I1 [A]		157.9059 -0.160456		177.6400 0.536203	19.73403 -0.375748	460.1880 0.479588	
• 12 [A]		-0.180458		0.360727	0.236392	0.350213	
I3 [A]		0.059962		0.917792	-0.977755	0.489087	
AUE-T							
10							
	· · · · · · · · · · · · · · · · · · ·						
	5.00	0.15.50			50	0.17.00 0	
0:1			 C. 0.16.00 A 	В		间隔	
。 	5.00			B 0:16.0846	79	间隔 0.271429	
0:1	5.00		 C. 0.16.00 A 	В	79	间隔	
0:1 时间 [s] ● U+_PU [V] ● UPU [V] ● Ip+_PU [A]	5.00			B 0:16.0846 0.67583 0.32293 1.953e-	79 6 8 5	间隔 0.271429 4.165e-3 9.417e-3 1.943e-7	
0:1 时间 [s] ● U+_PU [V] ● UPU [V]	5.00			B 0:16.0846 0.67583 0.32293	79 6 8 5 4	间隔 0.271429 4.165e-3 9.417e-3	

Report No.: 6134228.51V1.1

Page 150 of 247

G99/1-8

Clause Requirement - Test

Result - Remark

0.355411

40748.88

82180.85

0.252392

34123.42

62820.48

Verdict

Test no. 1.2.1 Single-pole short circuit with earth (type B) U/Un = 0 p.u, P=20%Pn, fault duration Λ AAFAΑ $\Lambda\Lambda$ 2 [A] • [1 A1012 • U...] • [3] • • 0:14.50 0:14.75 RMS A В Delta Avg Time [s] 0:14.958686 0:15.255076 0.296391 OU1 [V] 10.07712 -20.33079 -30.40791 1.655219 22.90042 O U 2 [V] 646.1388 -232.3297 413.8091 6.071792 461.7400 🛑 U 3 [V] 371.0767 643,9377 272.8610 -6.896776 461.0743 I1 [A] 63.83837 -300.1658 -364.0042 4.990005 233.7554 • 12 [A] -87.07595 235.7469 -0.611335 111.5558 148.6709 I3 [A] 20.95199 152.1286 131.1766 -3.959769 124.5676 U+_PU [V] 0.998482 0.683576 -0.314906 0.692964 0.694428 Ip+_PU [W] 0.203461 0.042490 -0.160971 0.051673 0.065306 ●lq+_PU [var] 0.363060 0.364655 0.326875 0.345735 -1.595e-3 • P_t@SG320HX [W] 65035.82 10663.15 -54372.67 16941.35 22950.65 **@Q_t@SG**320HX [var] 2596.953 117728.6 115131.6 103247.4 109559.4 Test no. 1.2.1 Single-pole short circuit with earth (type B) U/Un = 0 p.u, P=20%Pn, Injected reactive Current after 60ms \geq 10 • U2 [V] • U3 [V] 8 Ξ -[A] • U+ ..[A] • Ip+ 8 100 ŧ 8 t...[W] • I 8 ..ar] **0** 0:1 0:14.900 0:15.000 B 0:15.100 0:15.200 0:15.300 0:15.400 RMS Α в Delta Avg 0:14.959385 Time [s] 0:15.019688 0.060302 • U1 [V] 18.93747 21.53409 2.596617 1.812604 22.03877 OU2 [V] -642.9518 -629.8097 13.14211 -3.943524 462,5489 1.249104 460.9159 247.6314 O U3 [V] 185.3258 -62.30569 • U+_PU [V] 0.991021 0.682942 -0.308080 0.724442 0.729271 Ip+_PU [A] 0.206106 0.058508 -0.147599 0.121697 0.149928

P_t@SG320HX [W]

Q_t@SG320HX [var]

Iq+_PU [A]

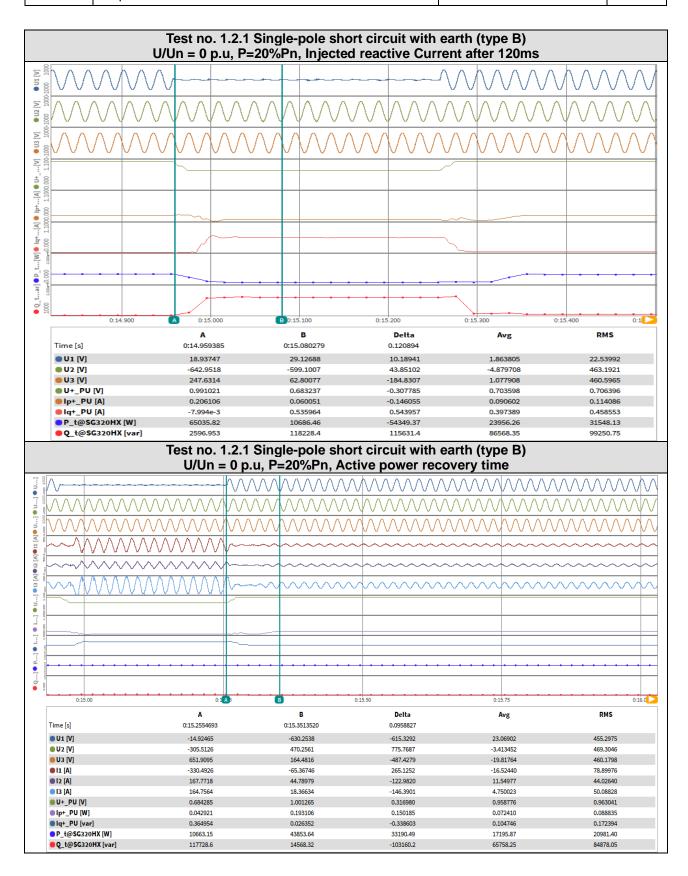
-7.994e-3

65035.82

2596,953

0.528305

9309.901

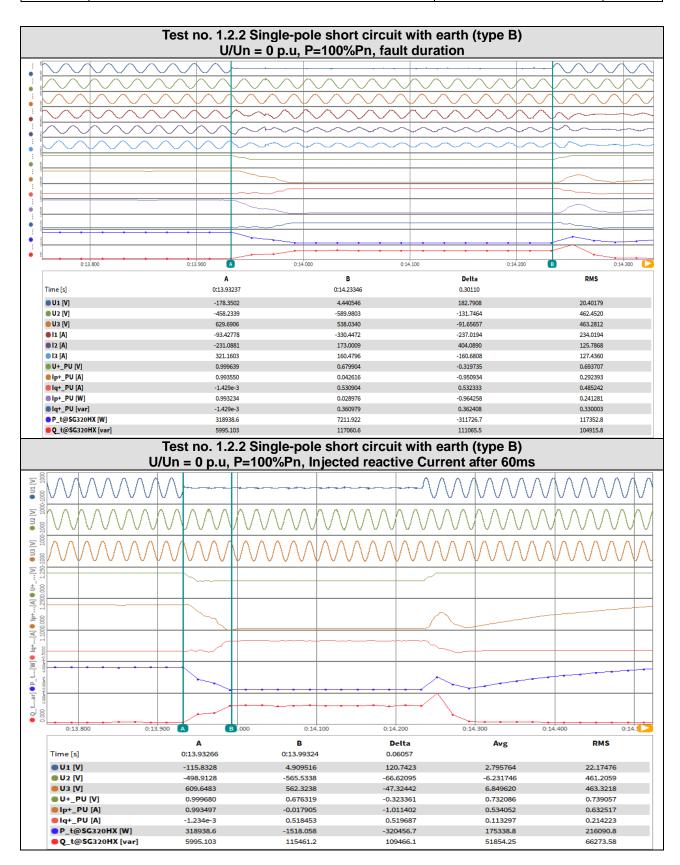

116629.1

0.536298

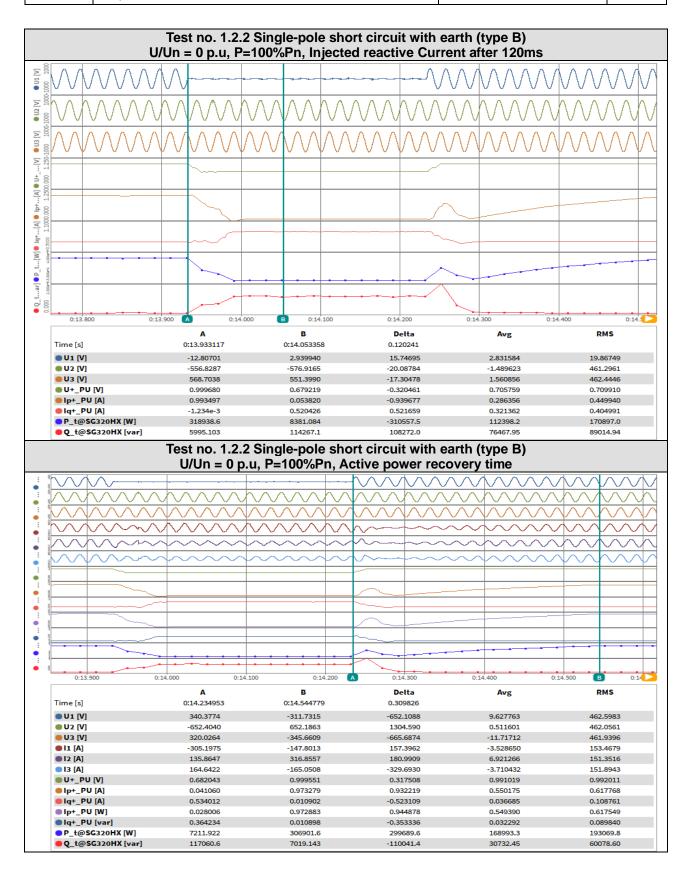
-55725.92

114032.2

Page 151 of 247 Report No.: 6134228.51							
	G99/1-8						
Clause	Requirement - Test		Result - Remark	Verdict			


Page 152 of 247

G99/1-8


Clause

Requirement - Test

Result - Remark

Page 153 of 247 Report No.: 6134228.51						
		G99/1-8				
Clause	Requirement - Test		Result - Remark	Verdict		

Page 154 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

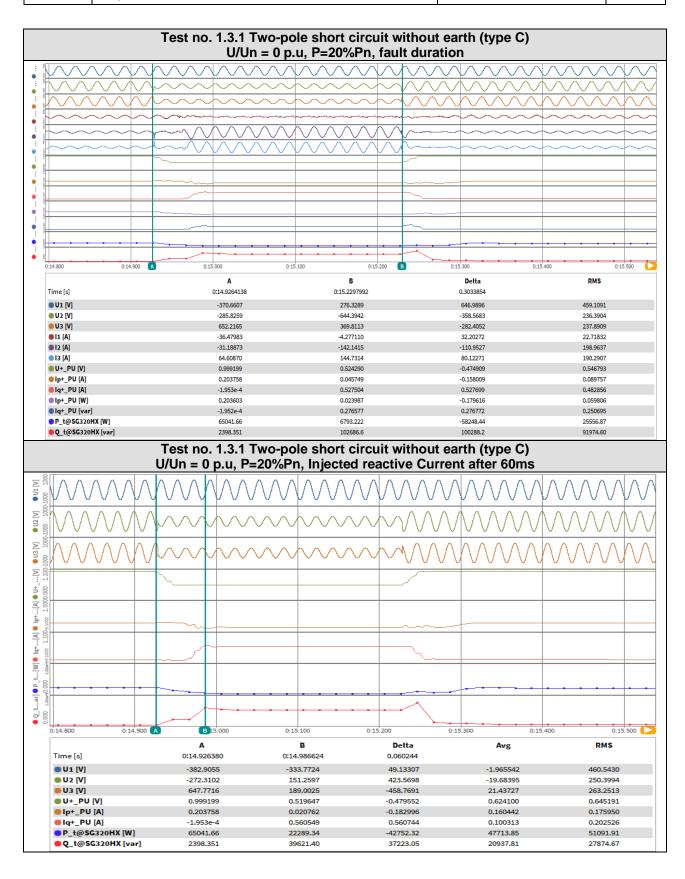
Requirement - Test

Result - Remark

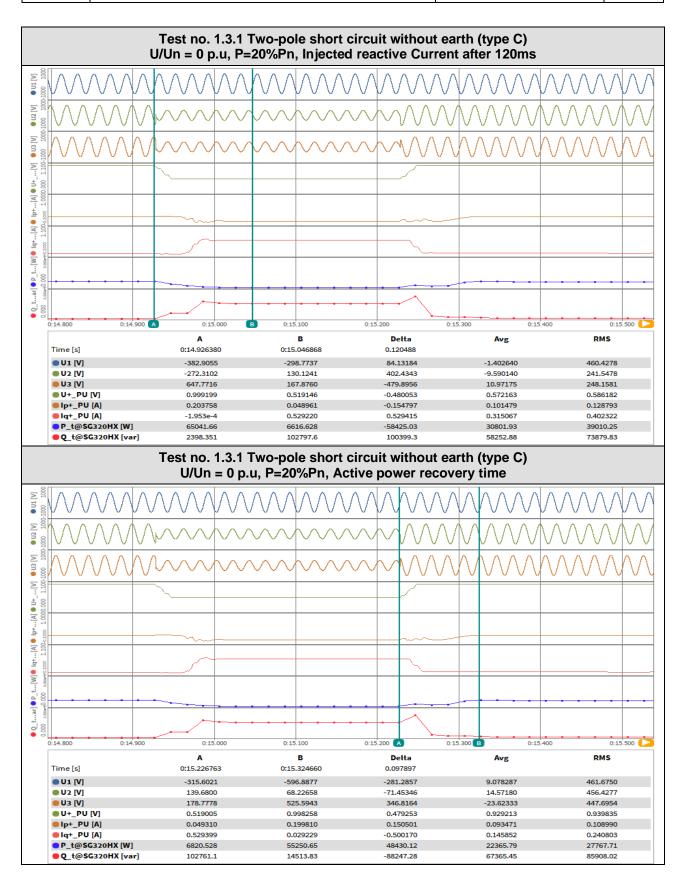
Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				1.3.1	1.3.2
	1		Phase 1			460.5	469
Before	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	463.3	461
	3		Phase 3	100110		460.9	463
	4		Phase 1			46.9	232
	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.2	232
dip < t ₁	6		Phase 3	100110		46.8	233
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.2	1.00
	8	Active power	total	100ms	W	65052	322277
-	9	Dest	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.001	0.01
	10	Reactive power	total	100ms	var	2850	6960
	11		Phase 1			457.8	460
1	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	229.8	231
	13		Phase 3	201115		229.9	231
	14		Phase 1			15.2	13
	15	Current	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	210.0	209
	16		Phase 3			201.2	204
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	302	302
During dip t1 to t2	18		Positive sequence		p.u.	0.27	0.27
	19	Reactive power	total		var	102978	10265
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.52	0.53
	21		Positive sequence	-20ms	p.u.	0.025	0.02
	22	Active power	total		W	6816	3942
	23	Active current	Positive sequence		p.u.	0.05	0.03
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.56	0.52
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.53	0.52
	26		Phase 1			461	463
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	462	460
	28	_	Phase 3			460	461
	29		Phase 1			47	233
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	231
After	31		Phase 3			46.8	230
dip > t ₂	32		Positive sequence		p.u.	0.2	1.00
	33	Active power	total	<i>t</i> ₂ +1s	W	65052	322277
Ē	34		Positive sequence		p.u.	0.001	0.01
	35	 Reactive power 	total	- t ₂ +1s	Var	2850	6960
	36	Active power recovery time	Positive sequence		ms	979	730

Report No.: 6134228.51V1.1

Page 155 of 247 G99/1-8


Requirement - Test

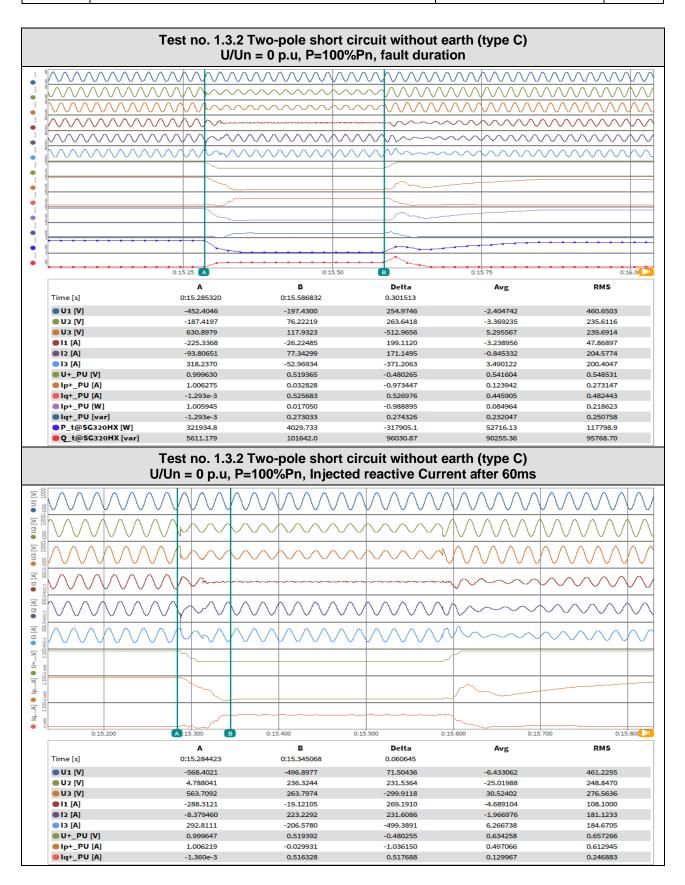
Clause

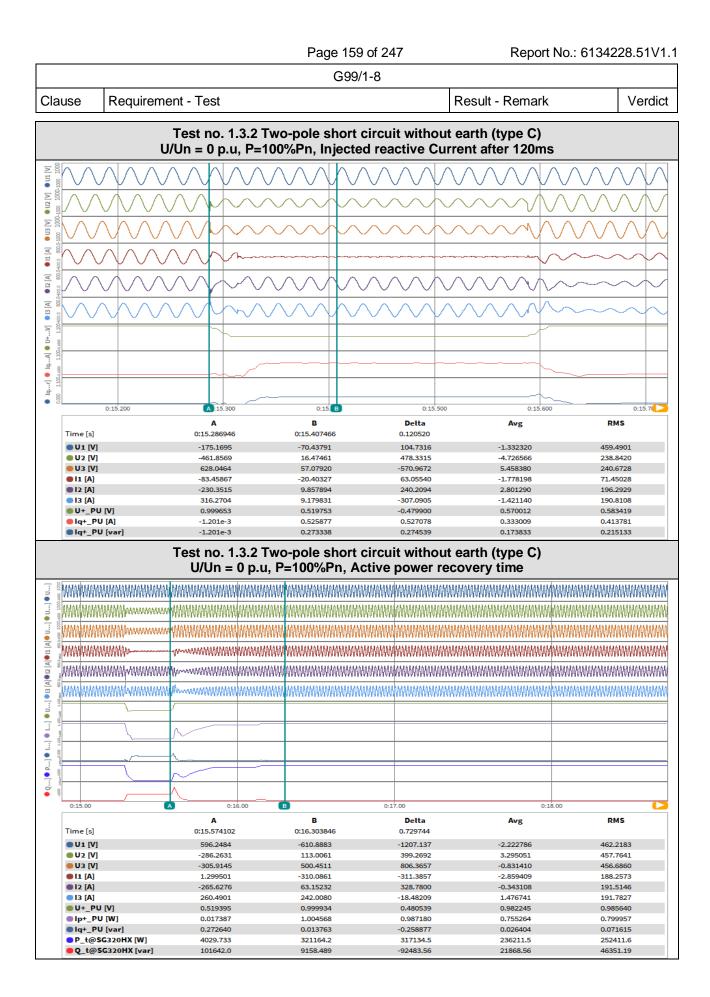

Result - Remark

Test no. 1.3.0 two-pole short circuit without earth (type C) U/Un = 0 p.u, P=0, Fault Duration							
	1	, , , , , , , , , , , , , , , , , , ,	- 1	H 1844 A 21 PH 1844 A 21 PH 1844 A 23 PH V Angeler College (College) (College) V Angeler College (College) (College) V A 21 H 1844 A 24 PH		HTERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	***************************************	*******	1423411144666649311141666664931141664664	AZETTETEKKA AZETETEKKA AZETETEKK	***************************************	
⁴ 4 Et 6 André 1944 et 4 André 2014 et 4 Et 6 André 1944 et 4 Et 6 El 2019 august autoris d'André 1940 et 6 André 1940 et 6 El 493 Et 4 Et 6 André 1940 et 6 André 1940 et 6 André 1940 et 6 El 493 Et 4 Et 6 André 1941 et 4 André 1941 et 4 Et 6 André 1941 El 493 Et 4 Et 6 André 1941 et 4 André 1941 et 6 André 1940 et 6 André 1940 et 6 André 1940 et 6 André 1940 et	майларна селакаларна селакаларна селакаларна селакалар - одукаларна селакаларна селакаларна селакаларна селакаларна - Царина Селакаларна селакаларна селакаларна селакаларна селакаларна - Царина селакаларна селакаларна селакаларна селакаларна селакаларна селакаларна селакаларна селакаларна селак			, parta (kana Argania) (kana)		аларын арабаларын арабаларын арар Дараман байын уртан арабаларын арабалары Тараууна арабаларын арабаларын арабаларын арабалары Тараууна арабаларын арабаларын арабаларын арабаларын арабаларын арабаларын арабаларын арабаларын арабаларын ар	
анан алар алар алар ан	ն։ Հանութ հայտեն հանգերը հայտներին հայրությունները տես	TTA ANA AMIN'NY AMIN'N	наканаки пракакаки прака Gange on States on the states	алар ()	A MARA BARA HA HA A MARA HA HA HA A MARA HA HA Mara Mara Mara Mara Mara Mara Mara Mara	ر د معمل المحالي المحال محرك المحالي ال محالي المحالي ا	
Z zekitaziten erkitaziten erkitaziten erkitaziten erkitazi	ANNI TIYKAANNI TIYKAANI TIYKAANI TIYKAANI	10H11664AAA10H16	TARHIFULKATARHIFULKATARI	¥¥¥££££££££££1111111111111111111111111	FFF 1 EEKA AAAA EFF 1 EEKA AAAA EFF 1 FEF KAAAA A.	JITETEKKAAATETEEKAAATETEKKAAA	
3							
5							
0:14.00	0:15.0		B 0:16.00		17.00	0:18.00	
0:14.00	0:15.0		B 0:16.00 B	。 间		0:18.00 有效值	
时间 [s]	0:15.37161		0:15.674552	0.302			
• U1 [V] • U2 [V]	331.8721 -185.1864		645.4275 -390.9205	313.5 -205.7		462.2694 239.6224	
• U3 [V]	-154.1152		-255.8355	-101.7		232.5854	
• I1 [A]	0.252485		0.107646	-0.144		0.489766	
 12 [A] 13 [A] 	0.208974 0.345588		-0.434637 0.294685	-0.643 -0.050		0.282091 0.417774	
	0.14.50	0.15.00			0.16.00		
	0.1450	0.15.091238		13.50 C	0.16.00	0.16.50	
	0.14-50	A 0:15.391238 0.516601		B 0:15.667822 0.514509	0.16.00	间隔 0.276584 -2.092e-3	
Bjil] [s] □ U+_PU [V] □ U+_PU [V]	0.14.50	A 0:15.391238 0.516601 0.485729		B 0:15.667822 0.514509 0.484628	016.00	间隔 0.276584 -2.092e-3 -1.101e-3	
B	0.14-50	A 0:15.391238 0.516601 0.485729 1.039e-4		B 0:15.667822 0.514509 0.484628 8.698e-5	0.16.00	间隔 0.276584 -2.092e-3 -1.101e-3 -1.689e-5	
Bjil] [s] □ U+_PU [V] □ U+_PU [V]	0.14.50	A 0:15.391238 0.516601 0.485729		B 0:15.667822 0.514509 0.484628	0.16.00	间隔 0.276584 -2.092e-3 -1.101e-3	

Page 156 of 247 Report No.: 6134228.51						
		G99/1-8				
Clause	Requirement - Test		Result - Remark	Verdict		

Page 157 of 247 Report No.: 6134228.51V							
	G99/1-8						
Clause	Requirement - Test		Result - Remark	Verdict			




Verdict

Page 158 of 247

G99/1-8

Clause Requirement - Test Result - Remark

Page 160 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```


Clause

Requirement - Test

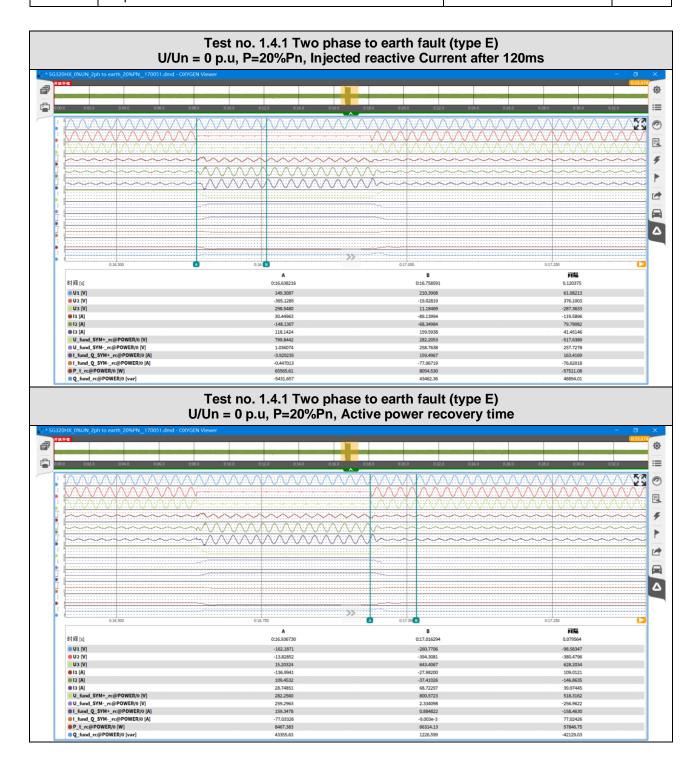
Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measur	ed value
	37	Test number				1.4.1	1.4.2
	38		Phase 1			461.9	462.6
Before	39	Voltage	Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	461.9	461.8
	40		Phase 3	1001113		461.8	462.2
	41		Phase 1			48.3	230.8
	42	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	46.5	230.0
dip < t ₁	43		Phase 3	1001115		46.4	230.4
	44		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.21	1.00
	45	Active power	total	100ms	W	65618	319740
-	46		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	-0.02	0.00
-	47	Reactive power	total	100ms	var	-5521	157
	48		Phase 1			463.0	462.7
	49	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	13.5	13.6
-	50		Phase 3	-20ms		12.7	14.2
-	51		Phase 1			84.8	85.4
-	52	Current	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	213.9	215.5
-	53		Phase 3			206.8	205.5
	54	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	269	252
During dip t ₁ to t ₂	55	Duri	Positive sequence		p.u.	0.14	0.14
	56	 Reactive power 	total		var	43452	43982
	57	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.63	0.63
	58		Positive sequence	-20ms	p.u.	0.03	0.02
	59	Active power	total		W	8054	5911
-	60	Active current	Positive sequence		p.u.	0.03	0.02
	61	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.63	0.63
-	62	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.63	0.63
	63		Phase 1			462.1	462.6
	64	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.9	461.9
-	65		Phase 3			461.6	462.1
-	66		Phase 1			48.0	230.7
-	67	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.5	230.1
After	68		Phase 3			48.0	230.1
dip > t ₂	69	A	Positive sequence		p.u.	0.21	1.00
	70	Active power	total	- <i>t</i> ₂ +1s	W	66792	318511
	71	Duni	Positive sequence		p.u.	0.00	0.00
	72	 Reactive power 	total	- t ₂ +1s	Var	1268	1066
	73	Active power recovery time	Positive sequence		ms	79	523

		Page 161 of 247	Report No.: 61342	28.51V1.1
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict



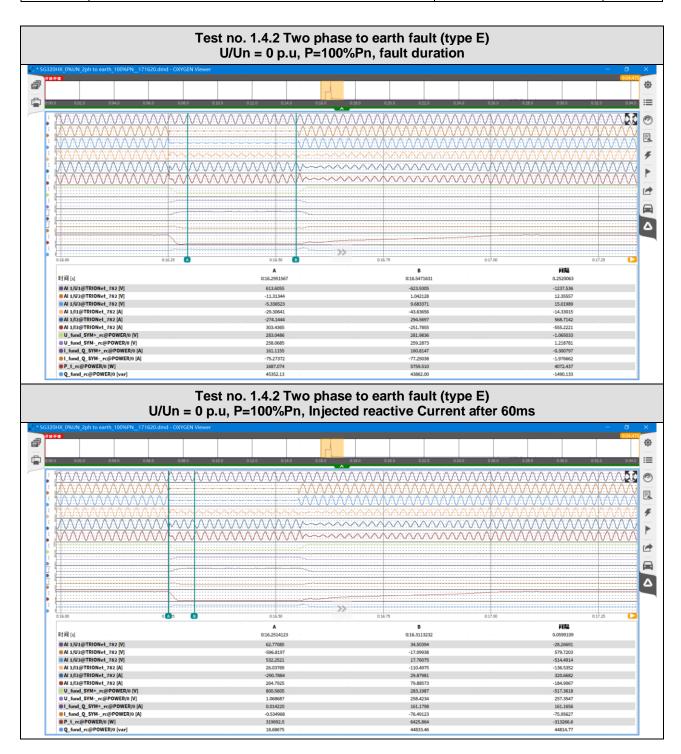
Page	162	of	247	
------	-----	----	-----	--


Clause

Requirement - Test

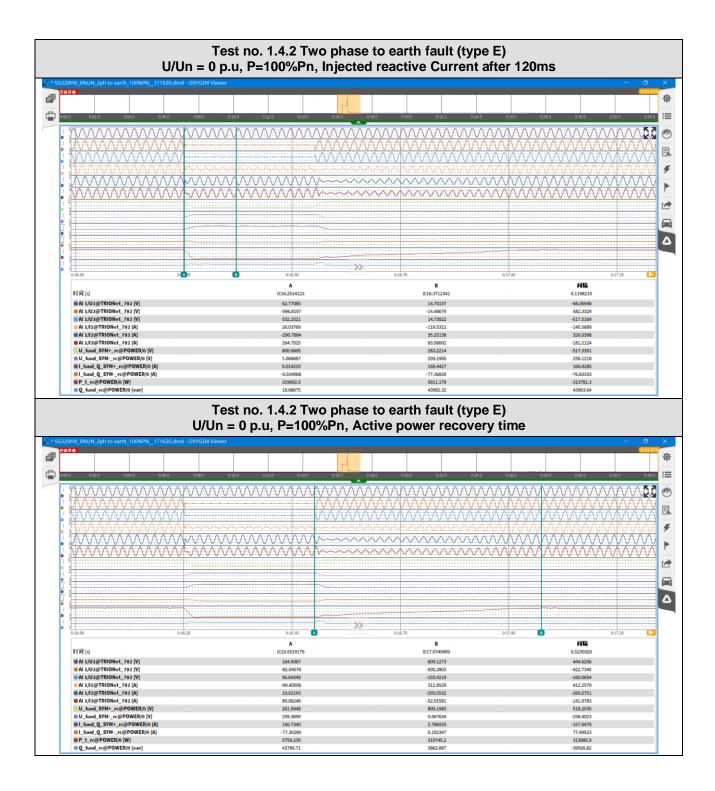
Result - Remark

		Page 163 of 247	of 247 Report No.: 6134228.51V1.1				
		G99/1-8					
Clause	Requirement - Test		Result - Remark	Verdict			



Page 16	64 of 247	•
---------	-----------	---

Clause


Requirement - Test

Result - Remark

Page	165	of 247	
------	-----	--------	--

Clause	Requirement - Test	Result - Remark	Verdict
--------	--------------------	-----------------	---------

Page 166 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				2.1.1	2.1.2
	1		Phase 1			461	462
	2	Voltage	Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	462	460
	3		Phase 3	100110		460	463
	4		Phase 1			47.2	233
Before dip < t ₁	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.2	231
$up < t_1$	6		Phase 3	100113		47.0	233
	7		Positive sequence	t_1 -500ms to t_1 -	p.u.	0.2	1.00
	8	Active power	total	100ms	W	65181	322088
	9	D	Positive sequence	t_1 -500ms to t_1 -	p.u.	0.002	0.01
	10	 Reactive power 	total	100ms	var	2942	7214
	11		Phase 1			50.4	50.4
	12	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	51.2	51.2
	13		Phase 3	-20113		50.6	50.6
	14	Current	Phase 1	t ₁ +100ms to t ₂ -20ms		241.8	242
	15		Phase 2		Arms	240.3	240
	16		Phase 3	-20113		240.2	241
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	512	519
During dip t ₁ to t ₂	18	Depative newsr	Positive sequence		p.u.	0.11	0.11
	19	 Reactive power 	total			36584	36741
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	1.04	1.04
	21		Positive sequence	-20ms	p.u.	0.01	0.01
	22	Active power	total		W	1664	1647
	23	Active current	Positive sequence		p.u.	0.05	0.05
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	1.04	1.01
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	1.04	1.04
	26		Phase 1			461	462
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461	460
	28		Phase 3			461	462
	29		Phase 1			47.1	233
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	231
After	31		Phase 3			47.0	232
dip > t ₂	32		Positive sequence		p.u.	0.2	1.00
	33	 Active power 	total	<i>t</i> ₂ +1s	W	65181	322088
	34	Desetive	Positive sequence	4	p.u.	0.002	0.01
	35	 Reactive power 	total	t ₂ +1s	Var	2942	7214
	36	Active power recovery time	Positive sequence		ms	595	645

Page 167 of 247

Report No.: 6134228.51V1.1

G99/1-8

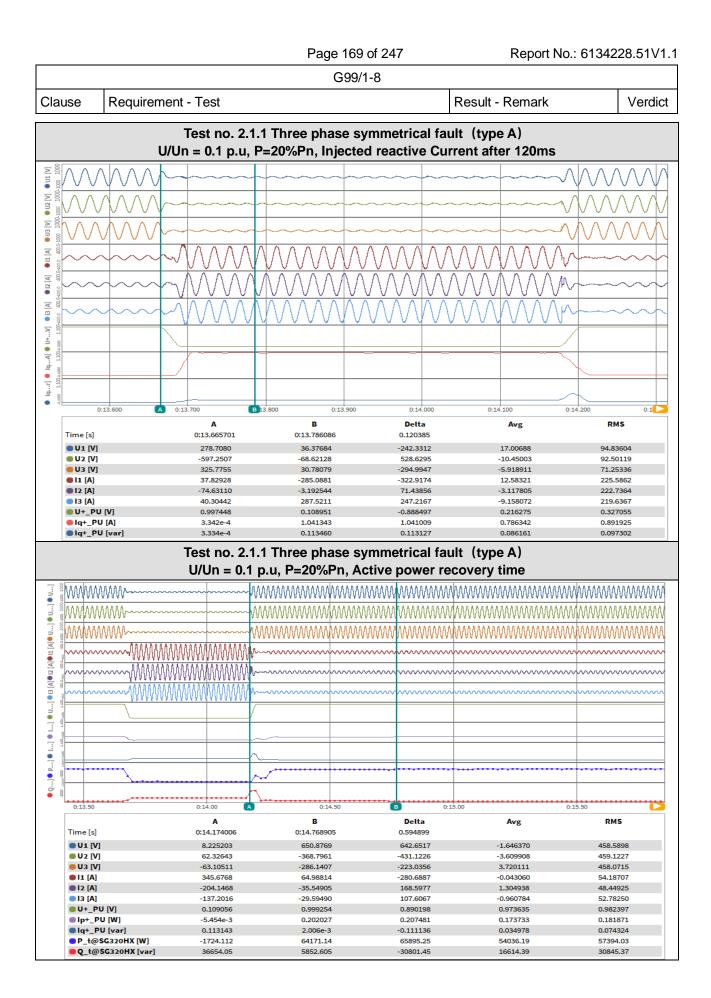
Clause

Requirement - Test

Result - Remark

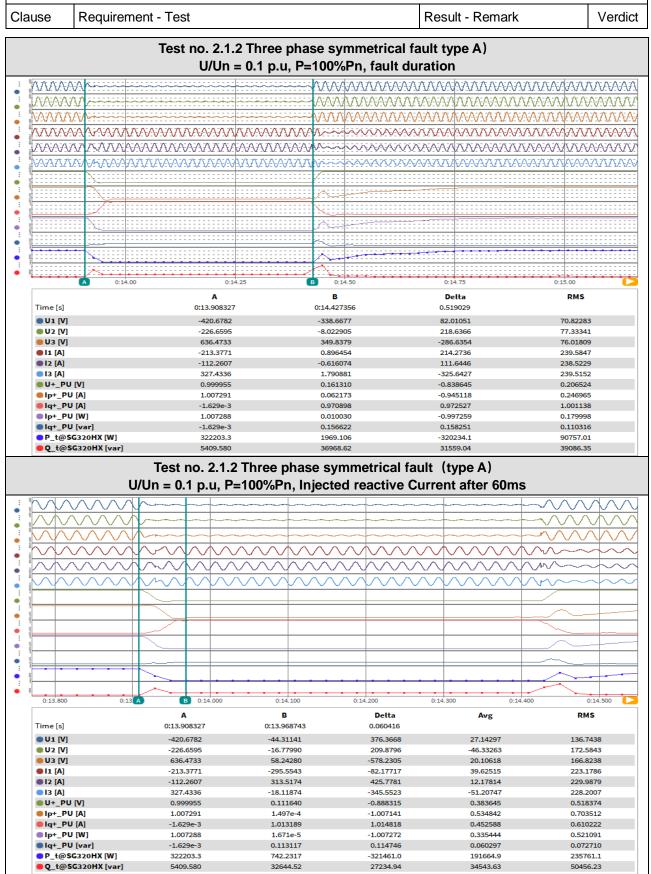
			se symmetrical , P=0, Fault Du		
⁰⁰¹ - Andreas Andreas Andreas Andreas Andreas - Andreas				n HERREN AN	
HERE A REPORT		HHHHHHHHH			
A REALIZED AND REALIZED AN REALIZED AND REALIZED AND R	unan ana ana ana ana ana ana ana ana ana	HYHYHYHYH HUH HIYI Y YCYYYYYYYYYYYYYYYYYY	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		i for a la al antidad a al la antidada da far a al pris a la for a al pris a s
02-000-00		· · · · · · · · · · · · · · · · · · ·			
000-2000		· · · · · · · · · · · · · · · · · · ·			
0007	0:15.00	A 0:16.00	B 0	217.00 0.1	8.00 0:
时间 [5]	A 0:15.803138		B 0:16.298686	间隔 0.495548	有效值
• U1 [V]	38.12790		597.0099	558.8820	56.42662
 U2 [V] U3 [V] 	31.24440 -67.51371		-521.6396 -75.83976	-552.8840 -8.326054	63.71006 48.91948
• I1 [A]	-0.481129		0.588656	1.069784	0.473092
 I2 [A] I3 [A] 	-0.297666 -0.504613		0.243783 0.798821	0.541449 1.303434	0.307848 0.419198
1.500					
1.00					
11 00011000					
20001.500					
001.100					
A	0.15.00	A 0:16.00	B 0:17.00	0:18.00	0.19.00
0.14.00		0.10.00	0.17.00		
0.14.00 时间[s] ● U+_PU [V]		A 0:15.812657 0.248182	Q	B 16.296140 0.099692	间隔 0.483483 -0.148491
0:14.00 时间 [5]		0:15.812657	0 2 -3 -2	16.296140	0.483483

Report No.: 6134228.51V1.1


Page 168 of 247 G99/1-8

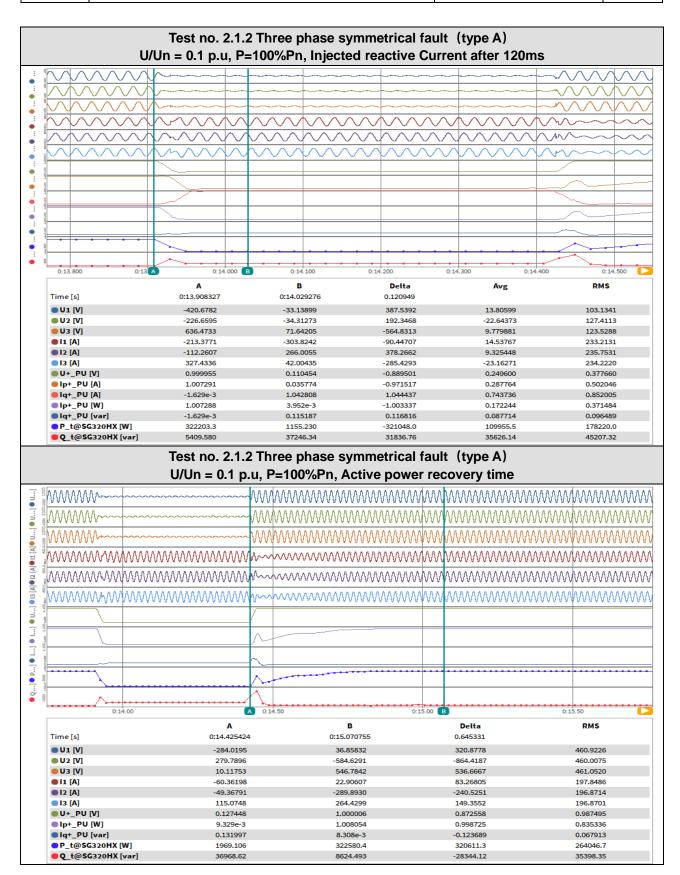
Clause

Requirement - Test


Result - Remark

Page 170 of 247

G99/1-8


Page 171 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Page 172 of 247

Report No.: 6134228.51V1.1

G99/1-8

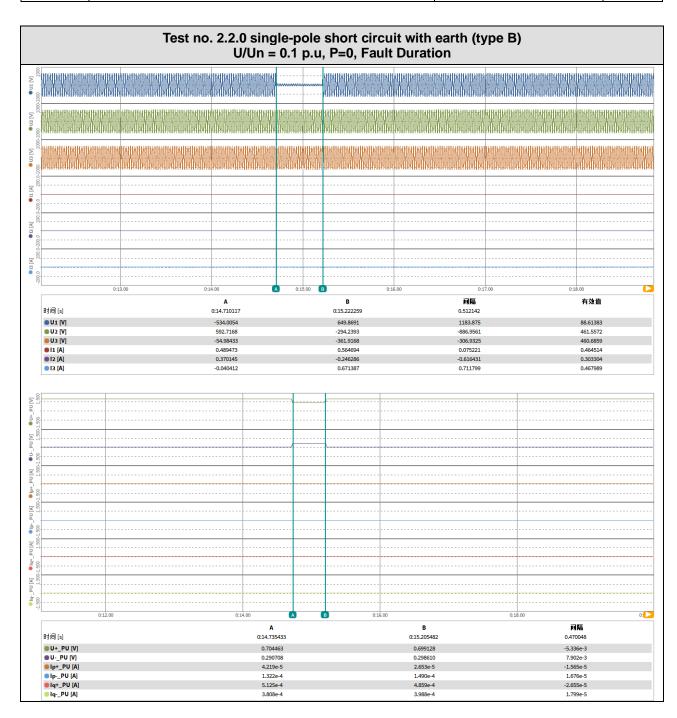
Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				2.2.1	2.2.2
	1		Phase 1			463	461.9
	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	460	461.2
	3		Phase 3	roomo		461	462.1
Before	4		Phase 1			47.2	234.9
dip < t ₁	5	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	46.9	234.7
	6		Phase 3	roomo		46.9	234.5
	7	Active newer	Positive sequence	t_1 -500ms to t_1 -	p.u.	0.2	1.01
	8	Active power	total	100ms	W	65087	324702
	9	Desetive	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.003	0.01
	10	 Reactive power 	total	100ms	var	2442	5892
	11		Phase 1			50.7	50.7
	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	461	464.5
	13		Phase 3	-20113		463	461.5
	14	Current	Phase 1	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	242.7	242.2
	15		Phase 2			115.5	118.2
	16		Phase 3	-20113		128.0	124.7
During	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	502	500
dip t ₁ to	18	Depative newsr	Positive sequence		p.u.	0.38	0.03
t ₂	19	 Reactive power 	total		var	124403	124679
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.54	0.04
	21		Positive sequence	-20ms	p.u.	0.04	0.37
	22	Active power	total]	W	11201	7566
	23	Active current	Positive sequence		p.u.	0.06	0.53
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.55	0.51
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.54	0.53
	26		Phase 1			462	462.3
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	460	460.1
	28		Phase 3			461	462.8
	29		Phase 1			47.2	235.3
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.0	233.7
After	31		Phase 3			47.0	235.1
dip > t ₂	32		Positive sequence	£ 1 1 0	p.u.	0.2	1.01
	33	Active power	total	- <i>t</i> ₂ +1s	W	65074	325134
	34	Depative	Positive sequence	4 4 -	p.u.	0.003	0.01
	35	Reactive power	total	- t ₂ +1s	Var	2839	7110
	36	Active power recovery time	Positive sequence		ms	582	560

Page 173 of 247

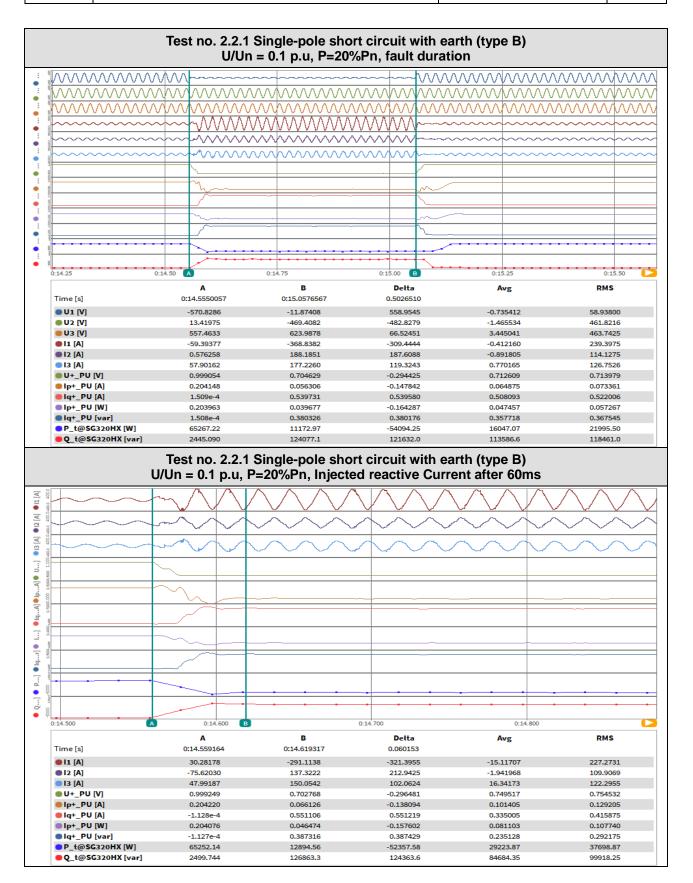

Report No.: 6134228.51V1.1

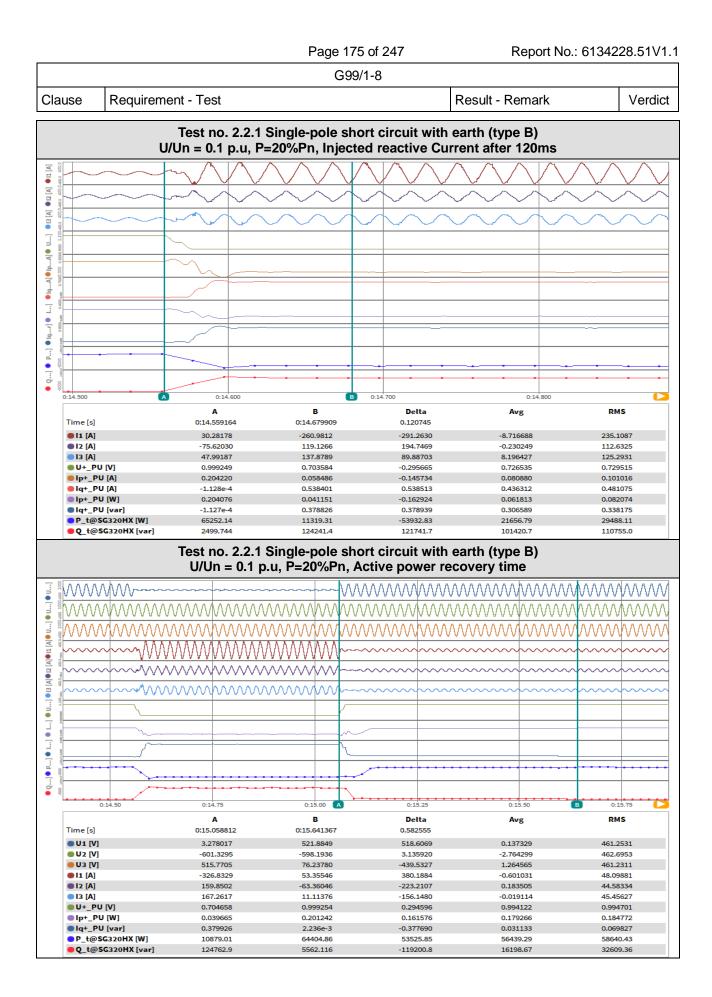
G99/1-8

Clause

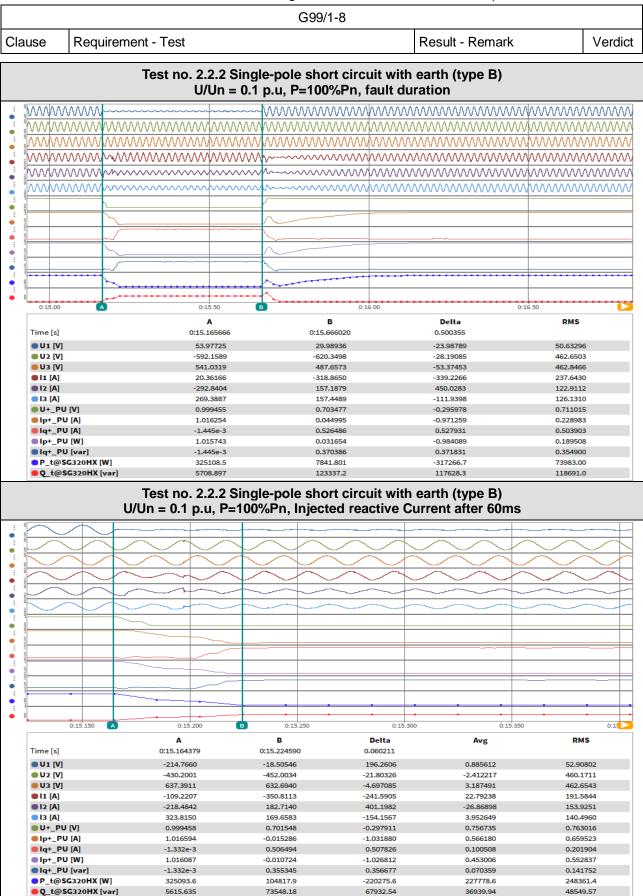
Requirement - Test

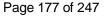
Result - Remark

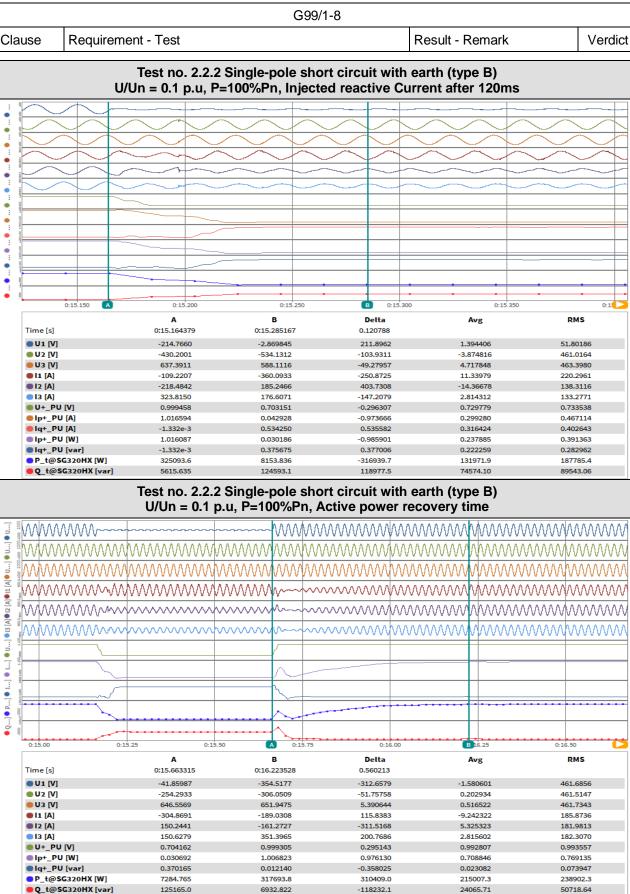

Report No.: 6134228.51V1.1


Verdict

Page 174 of 247


G99/1-8


Clause Requirement - Test Result - Remark



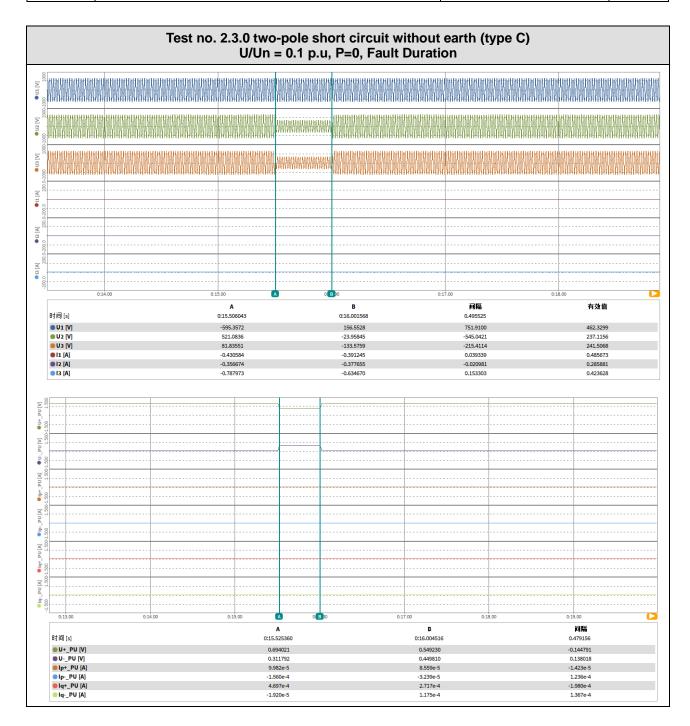
Page 176 of 247

Page 178 of 247

Report No.: 6134228.51V1.1

G99/1-8								
Clause	Clause Requirement - Test Re					nark	Verdict	
Item	No.	Parameter	Phase reference	Time reference Unit		Measure	Measured value	
	0	Test number				2.3.1	2.3.2	
	1	_	Phase 1	(500		461.7	461.6	
	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	461.3	462.9	
	3		Phase 3			461.5	460.8	
Defens	4		Phase 1			47.1	232.8	
Before dip < t ₁	5	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	47.1	232.9	
	6		Phase 3			47.0	231.9	
	7	A stive power	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.2	1.01	
	8	Active power	total	100ms	W	65078	322046	
	9	Depative neuror	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.01	0.01	
	10	Reactive power	total	100ms	var	2247	5355	
	11		Phase 1		2 Vrms	460.9	460.8	
	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms		234.9	235.0	
	13		Phase 3			234.8	234.8	
	14		Phase 1			14.7	12.2	
	15	Current	Phase 2	t ₁ +100ms to t ₂ -20ms	Arms	211.8	210.0	
	16		Phase 3	20113		202.8	204.4	
During	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	501	501	
dip t ₁ to	18	Desetive	Positive sequence		p.u.	0.29	0.02	
t ₂	19	Reactive power	total		var	104114	103225	
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.53	0.03	
	21	A	Positive sequence	-20ms	p.u.	0.02	0.29	
	22	Active power	Active power total		W	7579	4835	
	23	Active current	Positive sequence		p.u.	0.05	0.53	
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.52	0.53	
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.53	0.53	
	26		Phase 1			461.4	462.2	
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.3	461.2	
	28		Phase 3			461.9	462.1	
	29		Phase 1			47.1	233.0	
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.0	232.1	
After	31		Phase 3	1		57.0	232.5	
dip > t_2	32		Positive sequence	4.14-	p.u.	0.2	1.01	
	33	Active power	total	<i>t</i> ₂ +1s	W	65078	322057	
	34	Deseti	Positive sequence	1.1	p.u.	0.01	0.01	
	35	Reactive power	total	- t ₂ +1s	Var	2578	7192	
	36	Active power recovery time	Positive sequence		ms	572	589	

Г

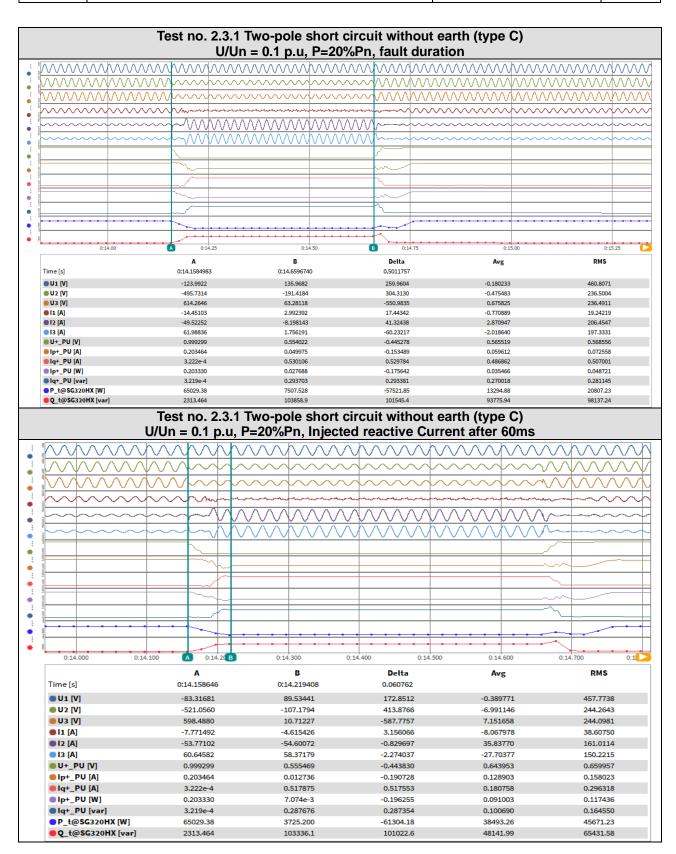

Page 179 of 247

G99/1-8

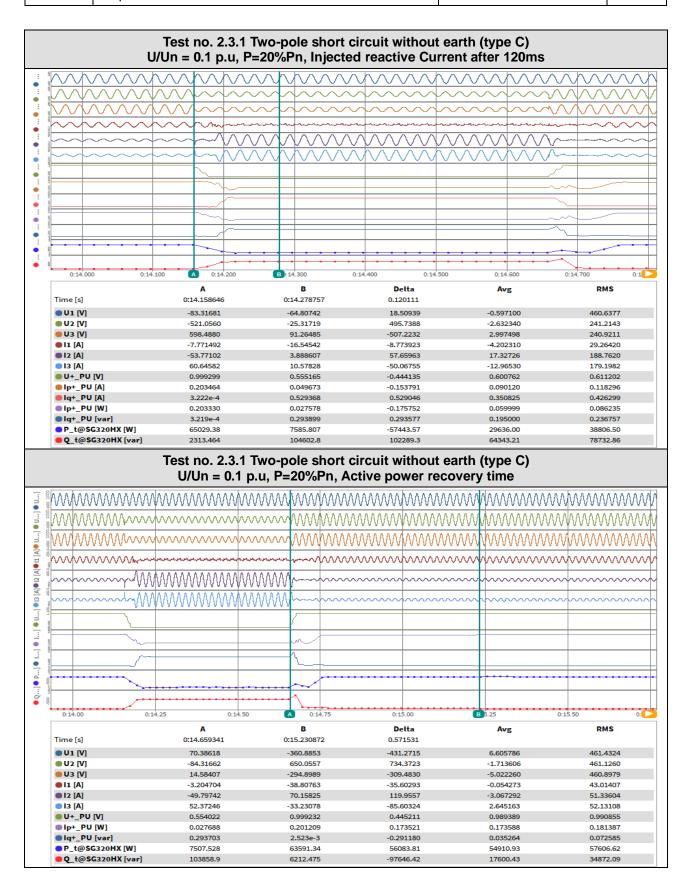
Clause

Requirement - Test

Result - Remark

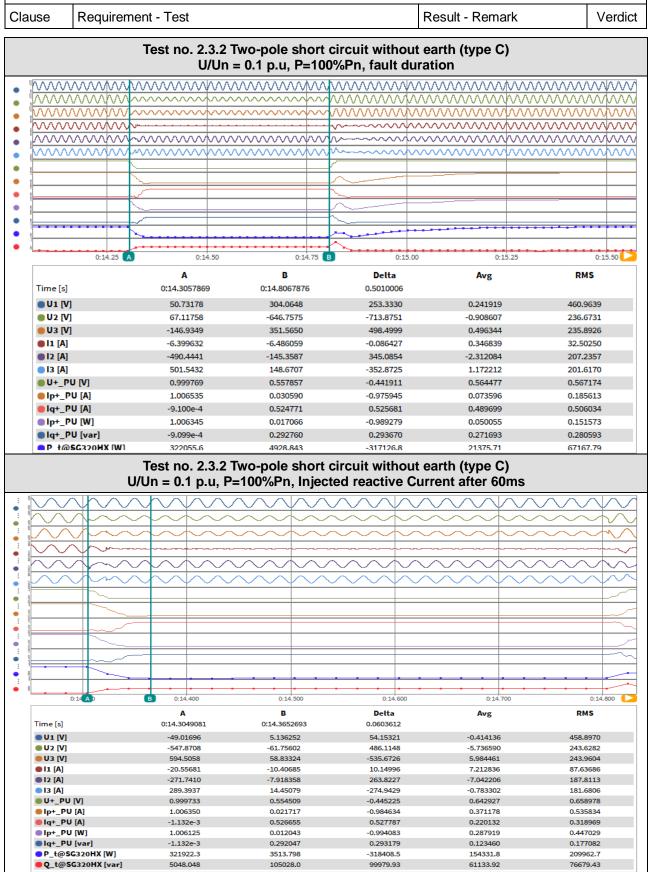

Page 180 of 247

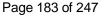
G99/1-8

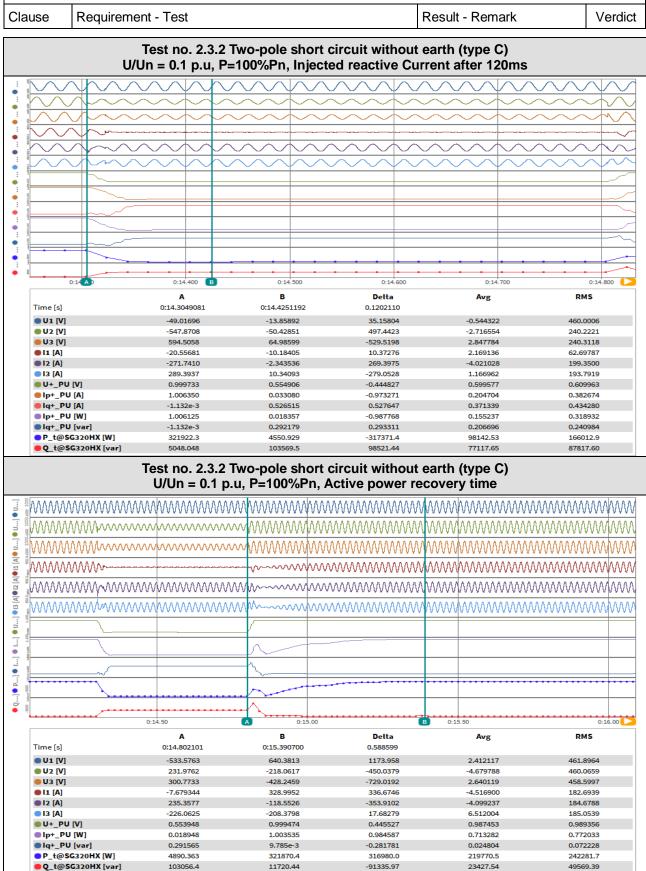

Clause

Requirement - Test

Result - Remark




		Page 181 of 247	Report No.: 61342	28.51V1.1
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict



Page 182 of 247

G99/1-8

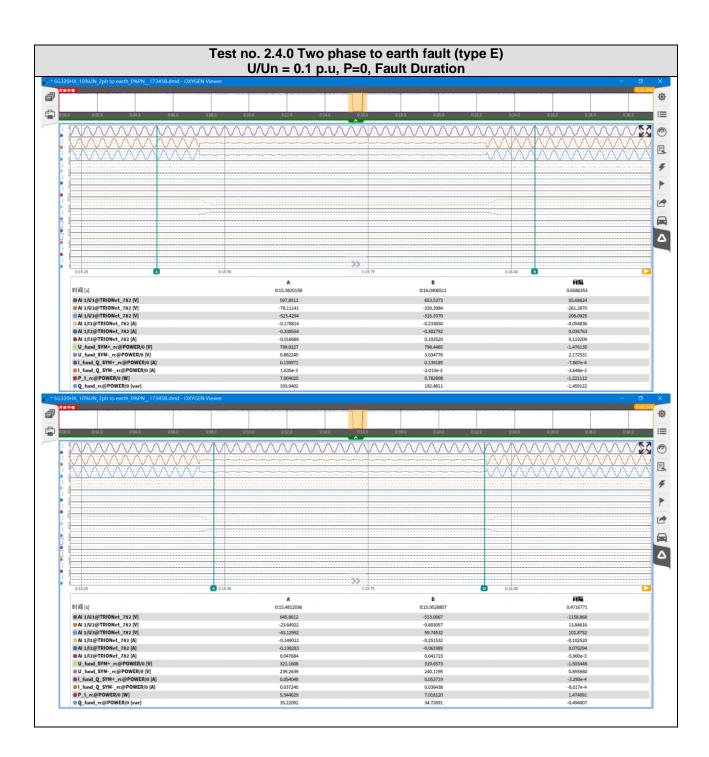
Page 184 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

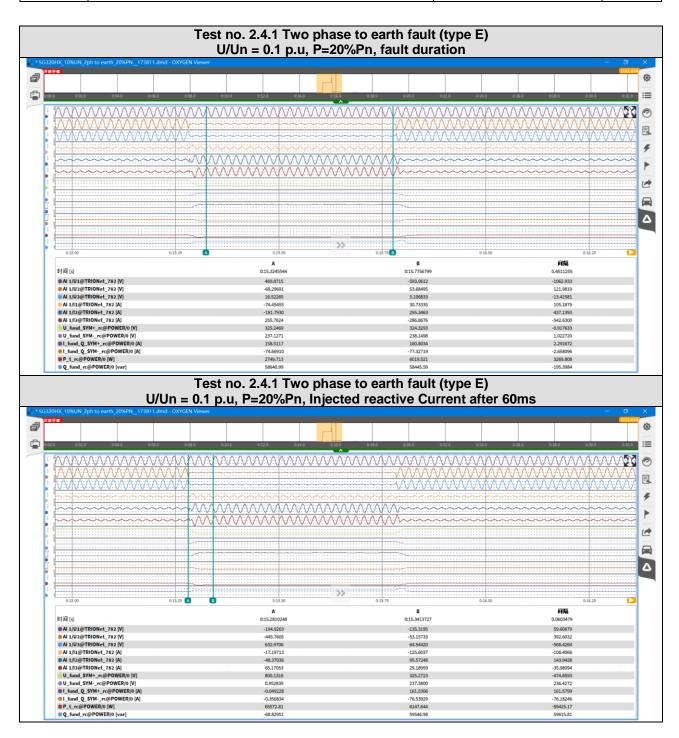
Requirement - Test

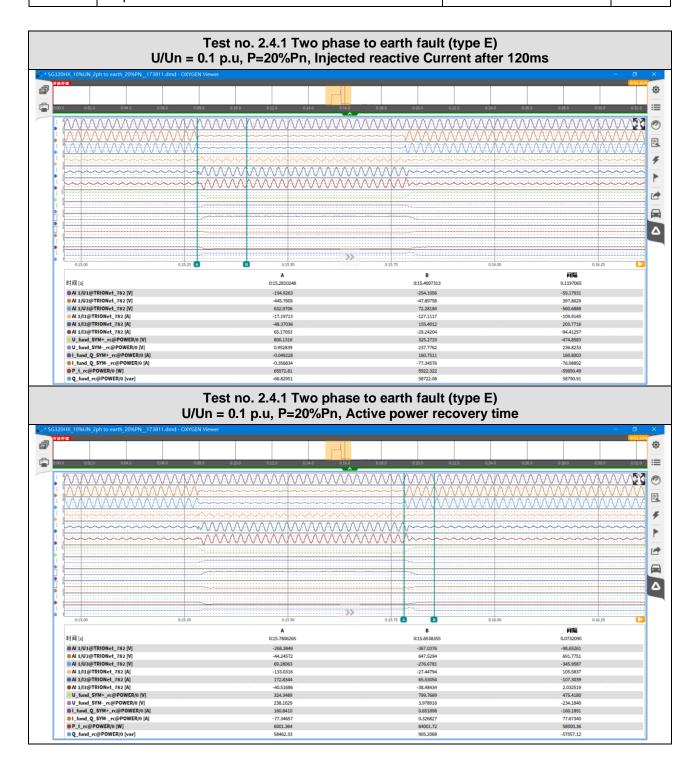

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	74	Test number				2.4.1	2.4.2
	75		Phase 1			462.6	463.7
	76	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	459.9	461.1
	77		Phase 3	100113		461.2	460.6
	78		Phase 1			49.6	234.2
Before	79	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	49.4	232.6
dip < t ₁	80		Phase 3	100113		49.5	232.3
	81		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.21	1.00
	82	Active power	total	100ms	W	65622	319568
	83		Positive sequence	t_1 -500ms to t_1 -	p.u.	0.00	0.00
	84	Reactive power	total	100ms	var	-169	3.82
	85		Phase 1			462.8	463.4
	86	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	50.5	50.4
	87		Phase 3	20115		50.4	50.3
	88		Phase 1		Arms	85.1	84.9
	89	Current	Phase 2	t ₁ +100ms to t ₂ -20ms		214.5	214.7
	90		Phase 3	-20113		207.5	207.0
	91	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	451	471
During dip t ₁ to t ₂	92	Desetive	Positive sequence		p.u.	0.19	0.03
	93	 Reactive power 	total	1	var	59546	10265
	94	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.63	0.63
	95	A	Positive sequence	-20ms	p.u.	0.02	0.01
	96	Active power	total	1	W	6147	3942
	97	Active current	Positive sequence	7	p.u.	0.02	0.01
	98	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.63	0.63
	99	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.63	0.63
	100		Phase 1			461.1	463.5
	101	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	460.8	460.9
	102		Phase 3	1		462.4	460.9
	103		Phase 1			47.1	233.9
	104	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	232.0
After	105		Phase 3	1		47.1	232.1
dip > t_2	106		Positive sequence		p.u.	0.20	1.02
	107	Active power	total	<i>t</i> ₂ +1s	W	63087	325272
	108	Depative	Positive sequence	4 4 -	p.u.	0.01	0.01
	109	 Reactive power 	total	- t ₂ +1s	Var	4185	2789
	110	Active power recovery time	Positive sequence		ms	73	564

Page	185	of 247	
------	-----	--------	--

G99/1	-8
-------	----

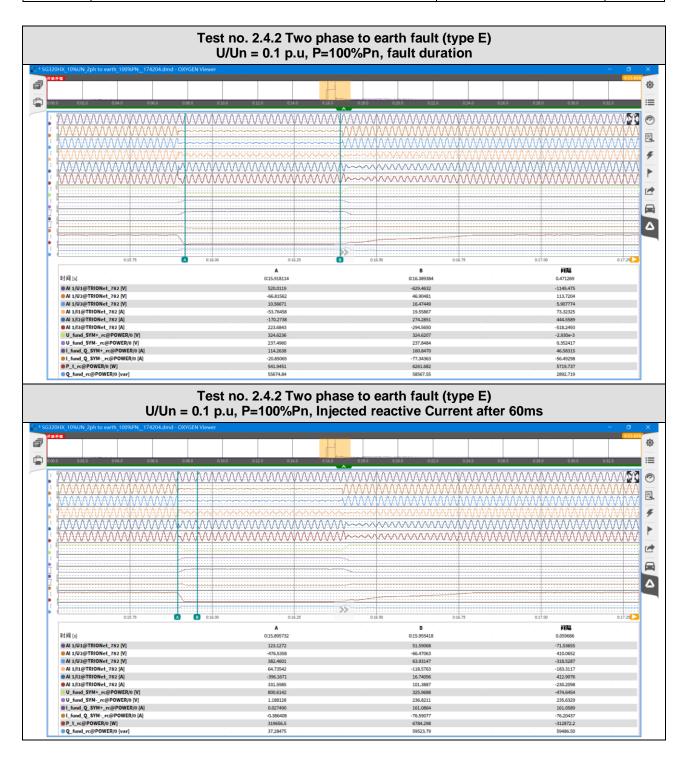

Clause	Requirement - Test	Result - Remark	Verdict
--------	--------------------	-----------------	---------


Clause

Requirement - Test

Result - Remark

	Report No.: 61342	28.51V1.1		
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict

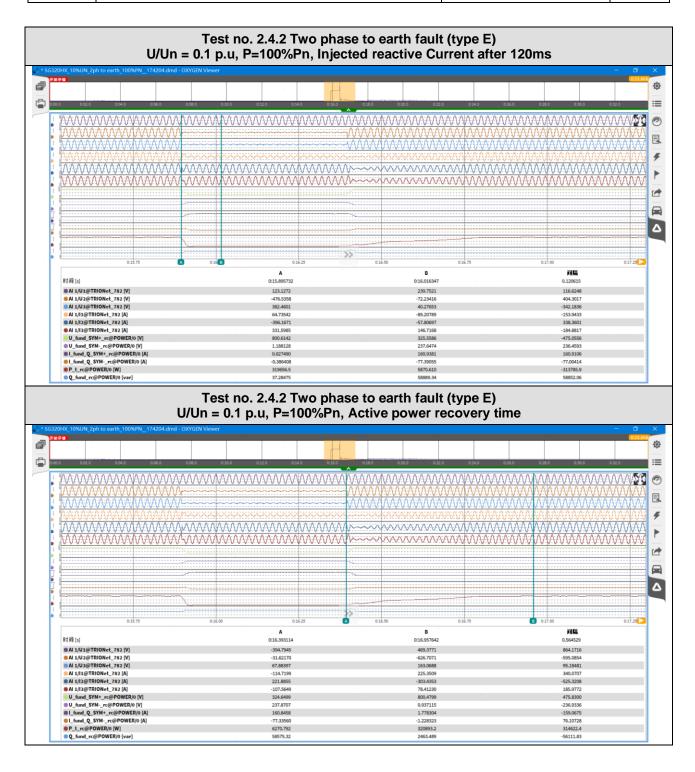


Page	188	of	247	
------	-----	----	-----	--

Clause

Requirement - Test

Result - Remark



Page	189	of 247	
------	-----	--------	--

Clause

Requirement - Test

Result - Remark

Page 190 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				1.3.1	1.3.2
	1		Phase 1			461.9	463.4
	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	460.4	459.6
	3		Phase 3	100113		462.2	462.2
	4		Phase 1			47.2	233.8
Before dip < t ₁	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.0	231.5
$up < t_1$	6		Phase 3	100113		47.1	232.8
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.01
	8	Active power	total	100ms	W	65209	322329
	9		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.01	0.01
	10	 Reactive power 	total	100ms	var	2278	5381
	11		Phase 1			235.2	235.2
	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	235.6	235.5
	13		Phase 3	201115	-	234.9	235.2
	14		Phase 1		Arms	243.6	244.0
	15	Current	Phase 2	t ₁ +100ms to t ₂ -20ms		243.4	243.7
	16		Phase 3	-201115		243.5	243.6
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	1501	1502
During dip t ₁ to t ₂	18	Duri	Positive sequence		p.u.	0.52	0.52
	19	 Reactive power 	total		var	166376	167672
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	1.02	1.03
	21		Positive sequence	-20ms	p.u.	0.13	0.12
	22	Active power	total		W	43083	38911
	23	Active current	Positive sequence		p.u.	0.26	0.24
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	1.08	1.07
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	1.02	1.02
	26		Phase 1			463.0	462.2
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	460.6	461.5
	28		Phase 3			460.9	461.6
	29		Phase 1			47.3	233.6
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.9	232.8
After	31	_	Phase 3			47.0	232.8
dip > t_2	32		Positive sequence		p.u.	0.20	1.01
	33	Active power	total	<i>t</i> ₂ +1s	W	65208	322790
	34		Positive sequence		p.u.	0.01	0.01
	35	 Reactive power 	total	t ₂ +1s	Var	2876	6956
	36	Active power recovery time	Positive sequence		ms	603	593

Page 191 of 247

Report No.: 6134228.51V1.1

G99/1-8

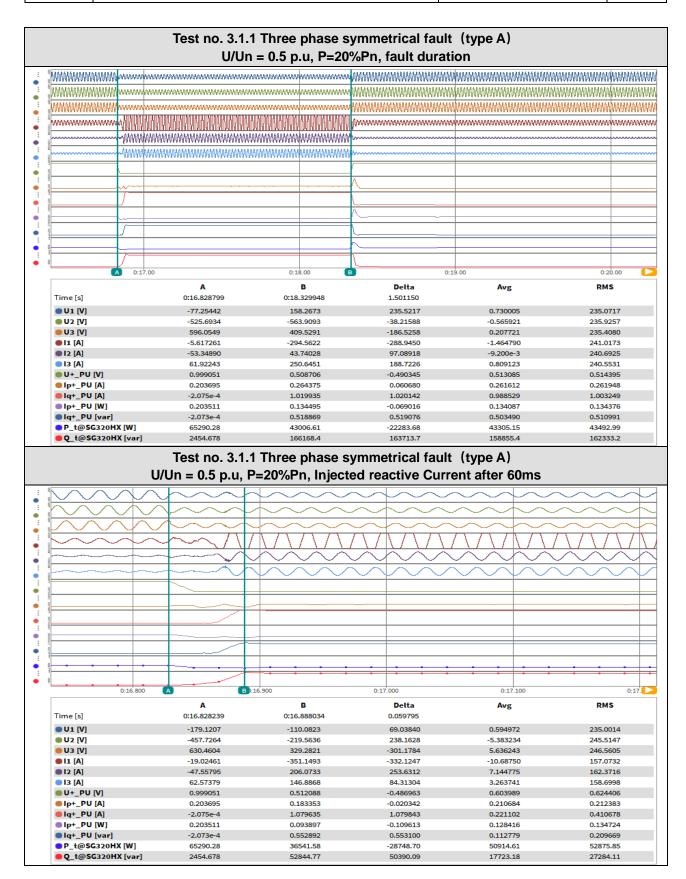
Clause

Requirement - Test

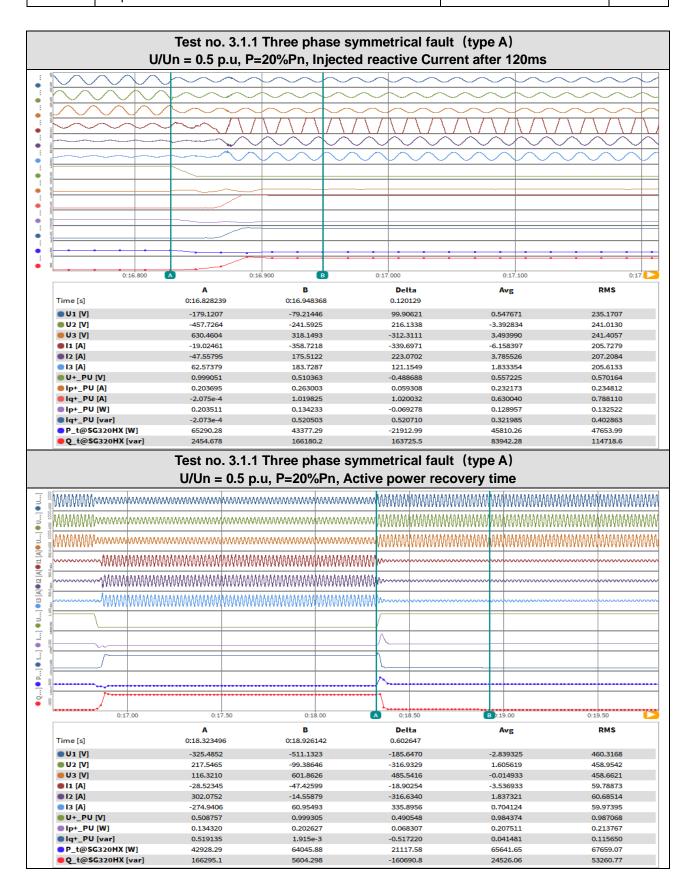
Result - Remark

[]	163	U	/Un =	0.5 p	ρ.u, P=0), Fau	etrical fa It Durati	ion			
									a da ang ang ang ang ang ang ang ang ang an		
	- Posters for version per transformer Sandra alla alla sita alla sita alla sita alla sita alla sita sita sita sita sita sita sita sit										
0:14.00		0:16.00 A	A	1	0:18.00 B		3	0:20 间隔	0.00	有效	0:22.00
时间 [s]		0:17.057324			0:18.55			1.502327			
 U1 [V] U2 [V] 		-282.5326 649.5048			-301.9 256.8			-19.40262 -392.6915		233.27 233.11	
• U2 [V] • U3 [V]		-370.5799			256.8 44.80			-392.6915 415.3849		233.11 232.95	
• I1 [A]		-0.267148			-0.555	515		-0.288367		0.4754	78
 12 [A] 13 [A] 		-0.419259 -0.655890			-0.268 -0.715			0.150561		0.3038 0.4206	
	0:14.0	0:16.0	0:18	3.0		0:20.0	0:2	2.0	0:24.0	0:26.0	
			A 0:17.0834				B 0:18.5689		Archite Fill Ar	间隔 1.48547	
0:12.0							0.54650			-0.052114	
0:12.0 时间 [s]			0.59861								
o:12.0 时间 [s] ● U+_PU [V] ● UPU [V]			0.59861 0.07365				0.044579			-0.029075	
0:120 时间 [s] ● U+_PU [V] ● UPU [V] ● Ip+_PU [A]			0.07365 -5.276e-0	6			-2.079e-4	1		-2.026e-4	
0:12.0 时间 [s] ● U+_PU [V] ● UPU [V]			0.07365	4 6 5				\$ 5			

Page 192 of 247


Report No.: 6134228.51V1.1

G99/1-8

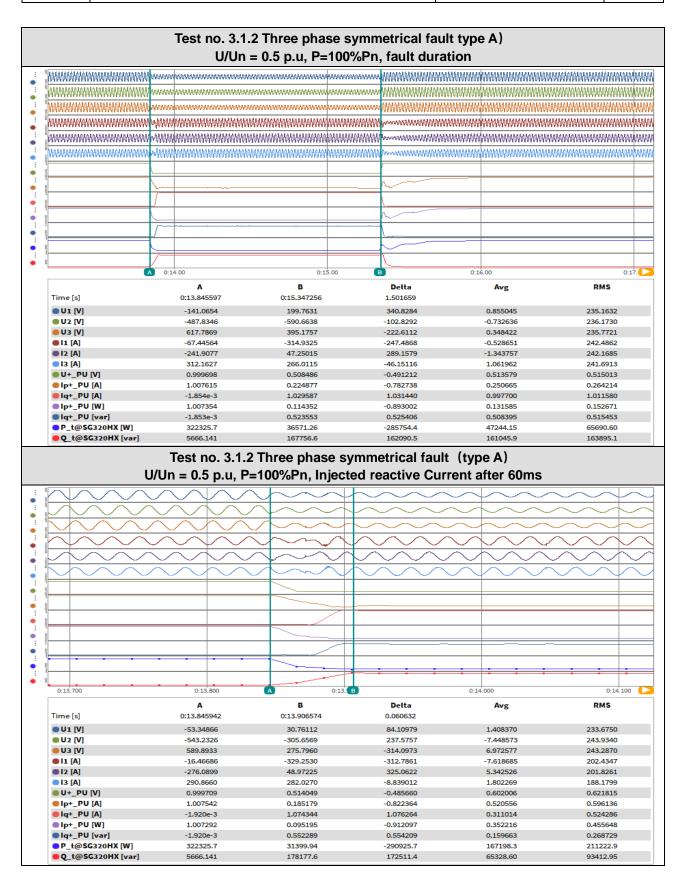

Clause

Requirement - Test

Result - Remark

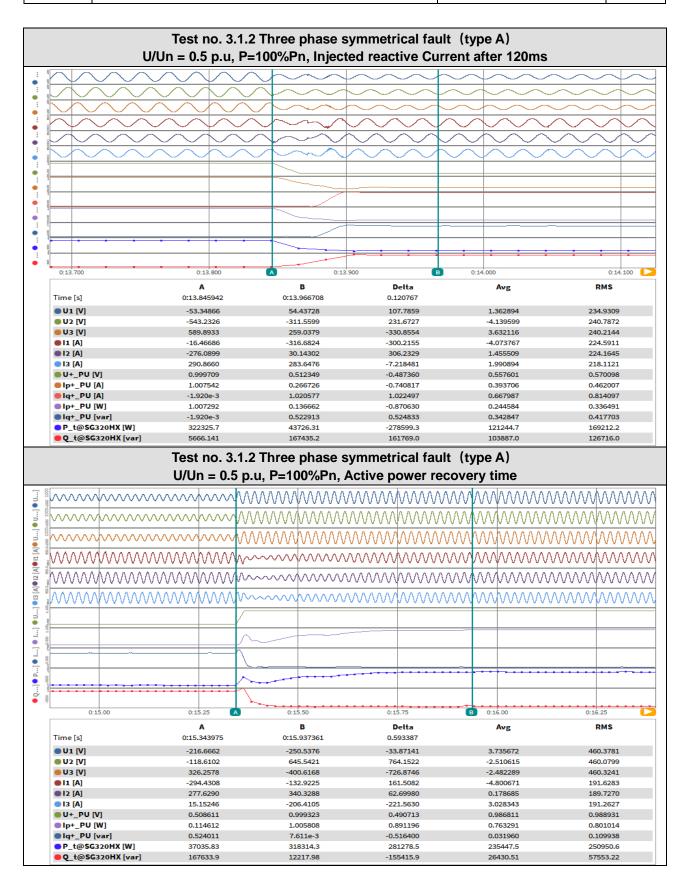
		Page 193 of 247	Report No.: 6134228.51V1.			
		G99/1-8				
Clause	Requirement - Test		Result - Remark	Verdict		

Page 194 of 247


Report No.: 6134228.51V1.1

G99/1-8

Requirement - Test


Result - Remark

Page	195	of	247
------	-----	----	-----

Clause Requirement - Test Result - Remark

Page 196 of 247

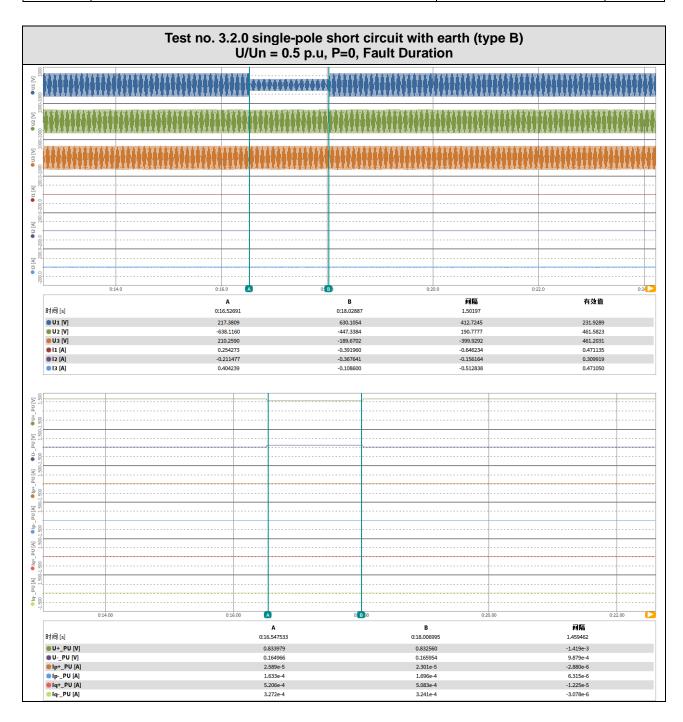
Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

Requirement - Test

Result - Remark


Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				3.3.1	3.3.2
	1		Phase 1			461.4	460.6
-	2	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	460.2	462.7
	3		Phase 3	100113		462.9	462.0
	4		Phase 1			47.1	232.4
Before	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.0	233.9
dip < t₁	6		Phase 3	100113		47.2	232.7
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.01
	8	Active power	total	100ms	W	65170	32351
	9		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.01	0.01
	10	Reactive power	total	100ms	var	2468	5469
	11		Phase 1			234.0	233.9
	12	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	462.1	462.8
	13		Phase 3	-20115		462.2	462.4
	14		Phase 1			167.4	210.9
	15	Current	Phase 2	t ₁ +100ms to t ₂ -20ms	Arms	48.7	88.2
	16		Phase 3			125.2	207.5
During	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	1501	1500
dip t ₁ to	18		Positive sequence		p.u.	0.30	0.29
t ₂	19	Reactive power	total		var	102099	90723
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.35	0.34
	21		Positive sequence	-20ms	p.u.	0.20	0.51
	22	Active power	total		W	62429	162539
	23	Active current	Positive sequence		p.u.	0.23	0.61
	24	Reactive Current	Positive sequence	<i>t</i> 1+60ms	p.u.	0.38	0.37
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.35	0.34
	26		Phase 1			460.3	462.5
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.6	462.4
	28		Phase 3			462.7	460.5
	29		Phase 1			47.9	233.1
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	233.1
After	31		Phase 3			47.2	231.2
dip > t ₂	32		Positive sequence		p.u.	0.20	1.01
	33	Active power	total	<i>t</i> ₂ +1s	W	65185	322692
	34		Positive sequence		p.u.	0.01	0.01
	35	 Reactive power 	total	- t ₂ +1s	Var	2805	7102
	36	Active power recovery time	Positive sequence		ms	680	582

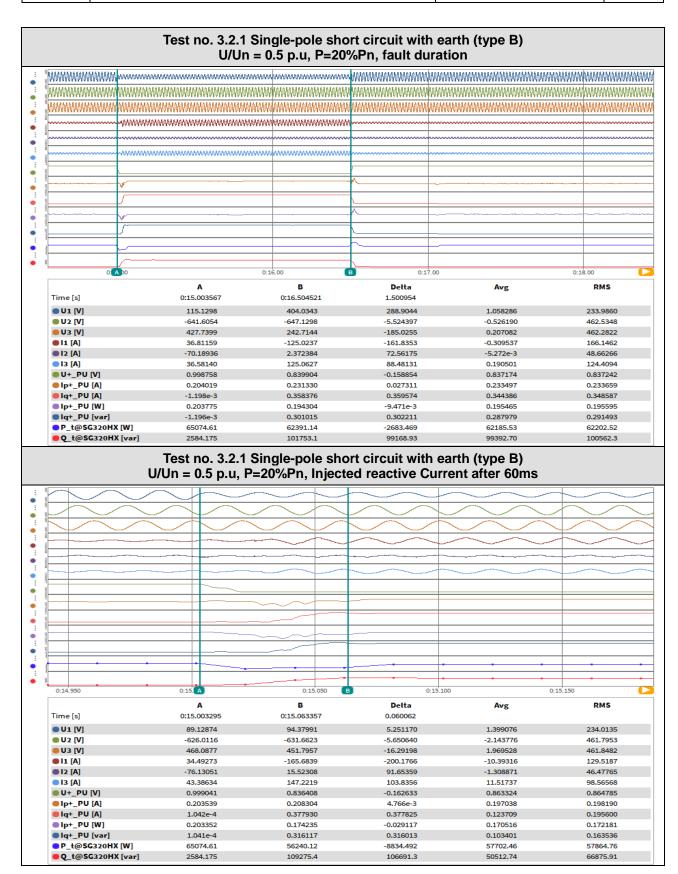
Page	197	of	247	
------	-----	----	-----	--

Clause

Requirement - Test

Result - Remark

Report No.:

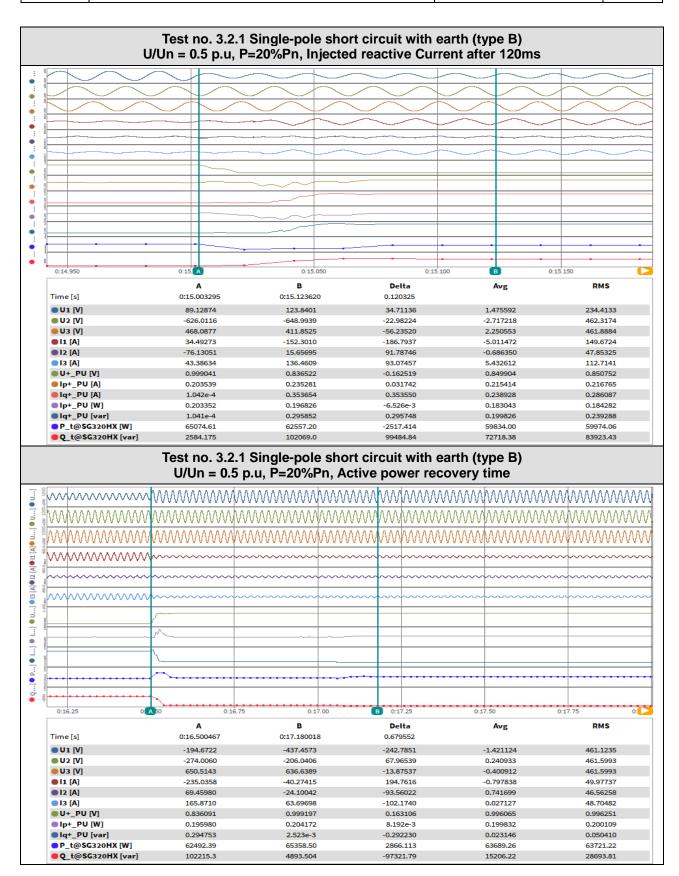

G99/1-8

Page 198 of 247

Clause

Requirement - Test

Result - Remark


Page 199 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Report No.: 6134228.51V1.1

Page 200 of 247

G99/1-8

Clause Requirement - Test Result - Remark

Verdict

Test no. 3.2.2 Single-pole short circuit with earth (type B) U/Un = 0.5 p.u, P=100%Pn, fault duration www www ᡧ᠕᠕᠕᠕᠕᠕᠕᠕᠕ www www.whentherewere the second of the second www ***** www • • • • • 0:15.50 0:16.50 0:15.0 0:16.00 в Delta RMS Α Avg 0:15.089693 0:16.589890 1.500197 Time [s] • U1 [V] 37.05967 47.61899 10.55932 1.115003 234.1510 ● U2 [V] ● U3 [V] -581.5367 -608.3984 -26.86167 -0.107957 462,4750 515.7510 0.044046 462.3723 546.3426 -30.59161 • I1 [A] 13.08310 -163.4629 -176.5460 0.487114 211.6087 • I2 [A] 284.8405 -81.05183 203.7887 -0.117768 94.91916 **|** |3 [A] 272.9467 245.4964 -27.45032 -0.307130 207.8103 • U+_PU [V] 0.999704 0.835920 -0.163784 0.837546 0.837628 Ip+_PU [A] 1.007593 0.610116 -0.397477 0.621093 0.624575 Iq+_PU [A] 0.342478 0.337914 -4.142e-4 0.342064 0.332472 Ip+ PU [W] 1.007338 0.510030 -0.497308 0.520660 0.524420 lq+_PU [var] -4.141e-4 0.285951 0.286365 0.278110 0.282660 162587.8 P_t@SG320HX [W] 322358.5 -159770.7 168498.2 166960.6 • Q t@SG320HX [var] 5288,900 90352.57 85063.67 89080 16 89852.75 Test no. 3.2.2 Single-pole short circuit with earth (type B) U/Un = 0.5 p.u, P=100%Pn, Injected reactive Current after 60ms • • • • • • • • • • • A 15.100 0:15.500 0:15.300 0:15.40 A В Delta RMS Avg 0:15.091647 0:15.151555 0.059908 Time [s] OU1 [V] 212,5505 201.3353 -11.21521 1,423321 234.0138 U2 [V] -644.8834 -646.5191 -1.635671 0.392971 461.5832 ● U3 [V] 237.3886 253.5825 16.19387 -0.448699 461.3831 • I1 [A] 228.3200 -271.3157 10.70406 226.0405 -42.99569 • 12 [A] -114.4639 -337.5787 223.1147 10.69071 188.0872 I3 [A] 111,3181 154,0468 42.72867 -21.30259 214,4362 • U+_PU [V] 0.997563 0.837066 -0.160496 0.858199 0.859402 Ip+ PU [A] 1.008320 0.621911 -0.386409 0.878904 0.897020 • lq+_PU [A] -8.567e-3 0.366485 0.375053 0.065030 0.123893 Ip+_PU [W] 1.005905 0.520603 -0.485302 0.757539 0.777112 Iq+_PU [var] -8.547e-3 0.306786 0.315333 0.054491 0.103727 166922.1 P t@SG320HX [W] 322358.5 -155436.5 246213.9 252562.2 Q_t@SG320HX [var]

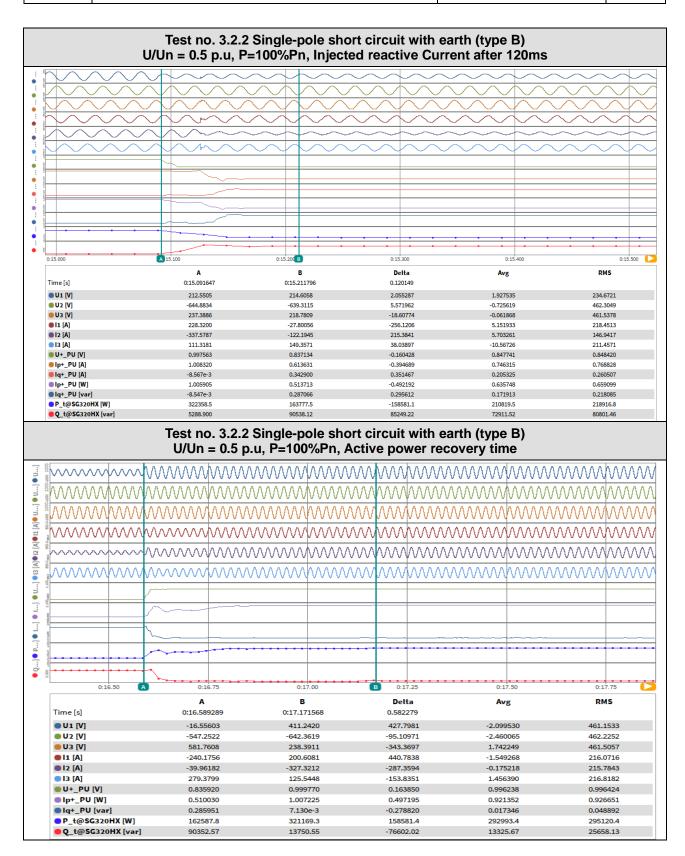
97832.11

92543.21

60073.85

73117.91

5288.900


Page 201 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Page 202 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

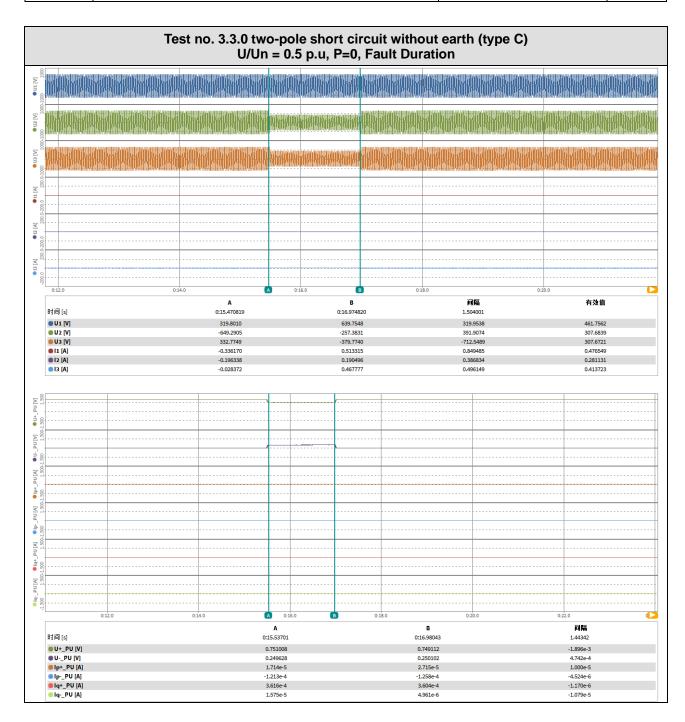
Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	0	Test number				3.3.1	3.3.2
	1		Phase 1			461.0	461.8
	2	Voltage	Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	460.3	460.9
	3		Phase 3	100113		463.3	462.4
	4		Phase 1			47.1	233.0
Before dip < t ₁	5	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	47.0	232.1
	6		Phase 3	100113		47.2	232.9
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.01
-	8	Active power	total	100ms	W	65208	322315
	9	Dest	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.01	0.01
	10	Reactive power	total	100ms	var	2435	6047
	11		Phase 1			461.5	461.6
	12	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	307.6	307.4
	13		Phase 3	-201115		307.5	307.8
	14		Phase 1			27.7	26.0
	15	Current	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	216.7	219.0
	16		Phase 3			190.8	194.2
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	1499	1499
During dip t ₁ to t ₂	18	D	Positive sequence	_	p.u.	0.39	0.39
	19	Reactive power	total		var	135110	13635
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.52	0.52
	21		Positive sequence	-20ms	p.u.	0.09	0.09
	22	Active power	total		W	28978	27689
-	23	Active current	Positive sequence		p.u.	0.12	0.11
	24	Reactive Current	Positive sequence	<i>t</i> 1+60ms	p.u.	0.51	0.51
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.52	0.52
	26		Phase 1			461.4	461.9
-	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.5	461.0
-	28		Phase 3			461.6	462.4
	29		Phase 1			47.2	233.3
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.2	232.4
After	31		Phase 3			47.9	233.1
dip > t ₂	32		Positive sequence		p.u.	0.20	1.01
	33	Active power	total	total total		65199	322667
	34	Depation	Positive sequence		p.u.	0.01	0.01
	35	 Reactive power 	total	- t ₂ +1s	Var	2837	7362
	36	Active power recovery time	Positive sequence		ms	585	570

Page 203 of 247


Report No.: 6134228.51V1.1

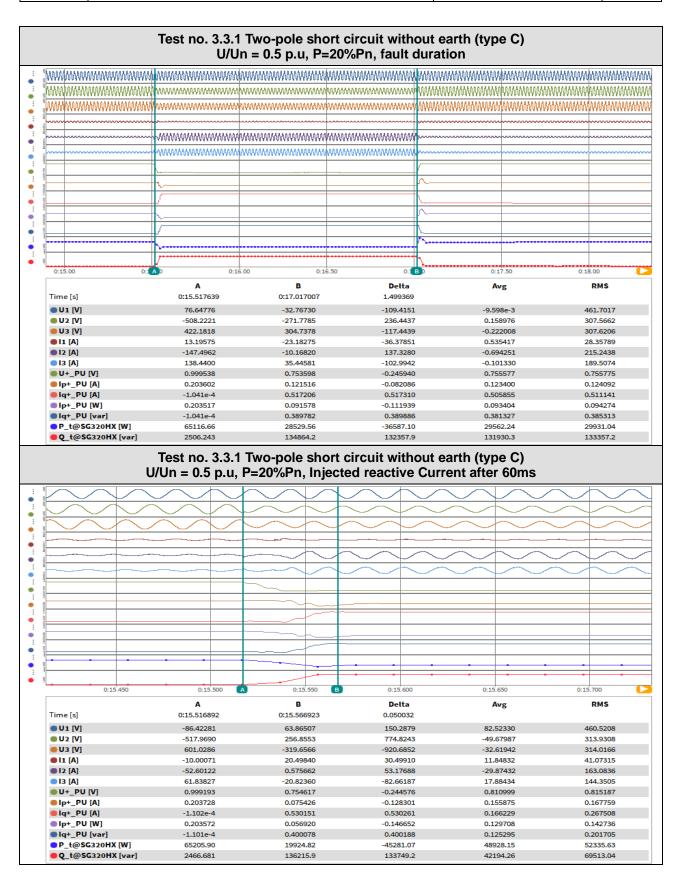
G99/1-8

Clause

Requirement - Test

Result - Remark

Report No.: 6134228.51V1.1

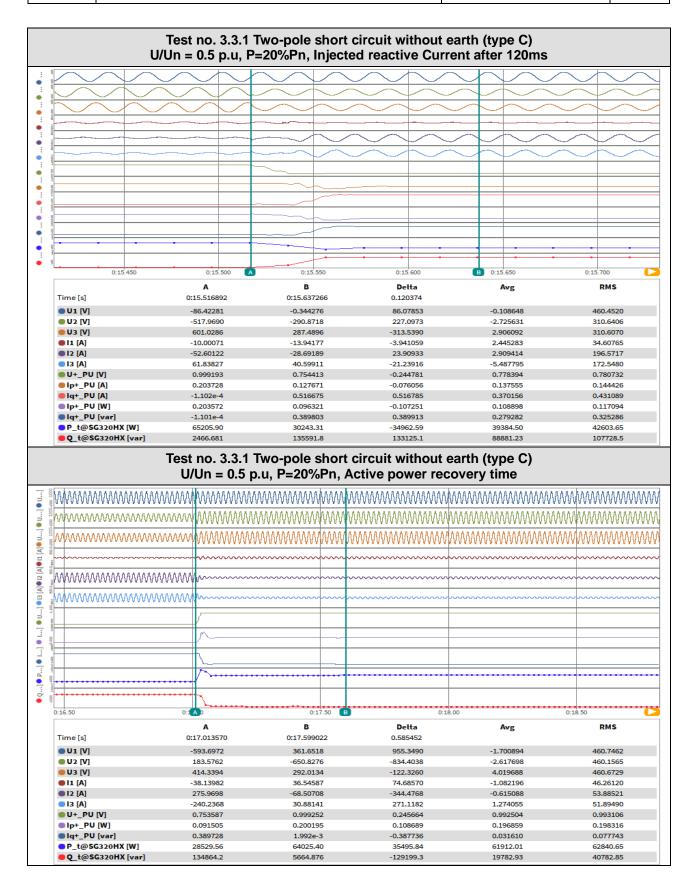

Page 204 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

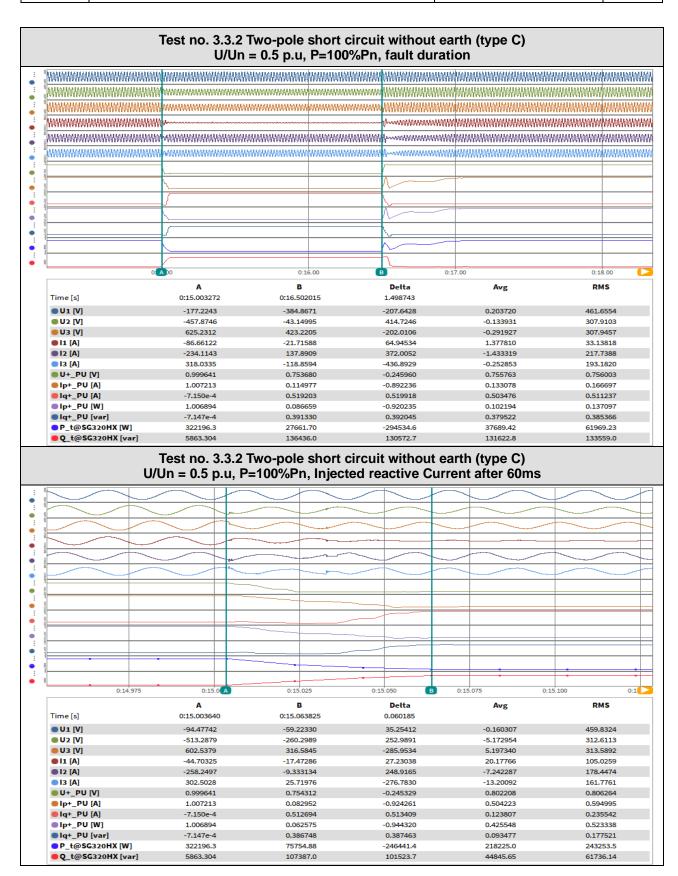


Page	205	of	247
------	-----	----	-----

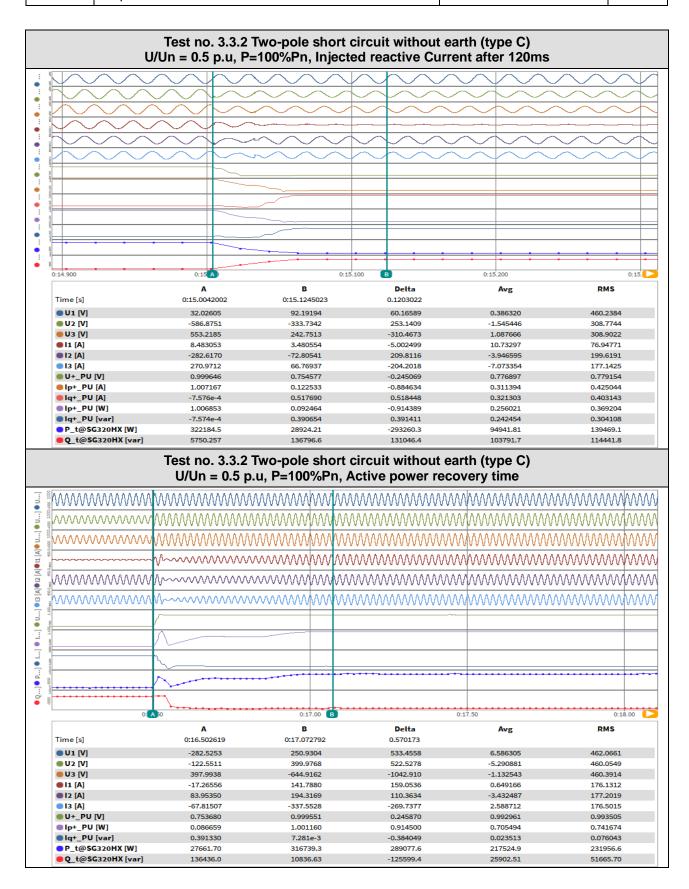
Clause

Requirement - Test

Result - Remark


Page 206 of 247

G99/1-8


Clause

Requirement - Test

Result - Remark

Page 207 of 247	Report No.: 61342	228.51V1.1
G99/1-8		
Clause Requirement - Test	Result - Remark	Verdict

Page 208 of 247

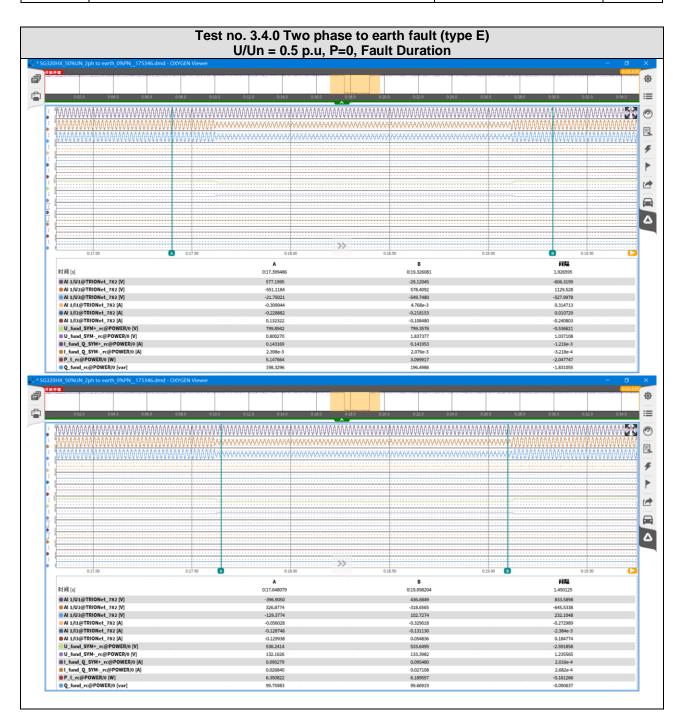
Report No.: 6134228.51V1.1

```
G99/1-8
```

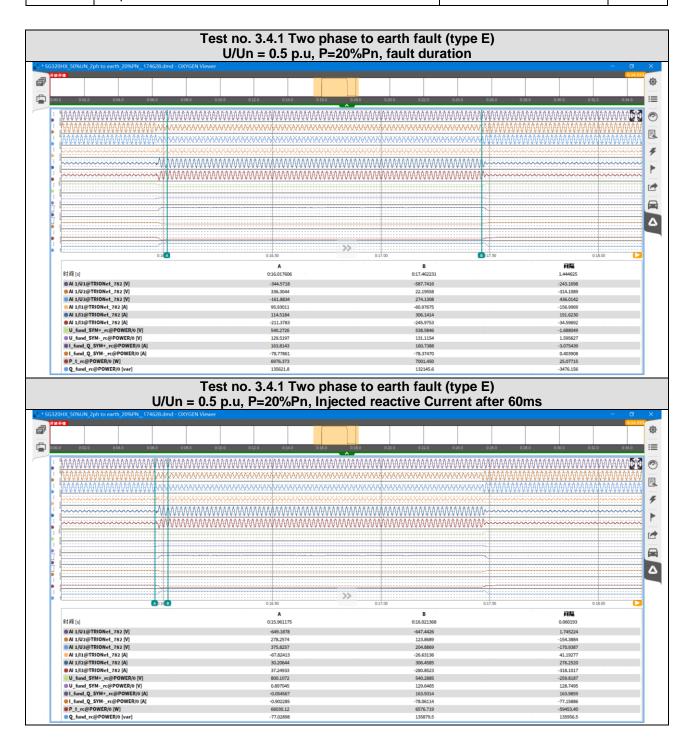
Clause

Requirement - Test

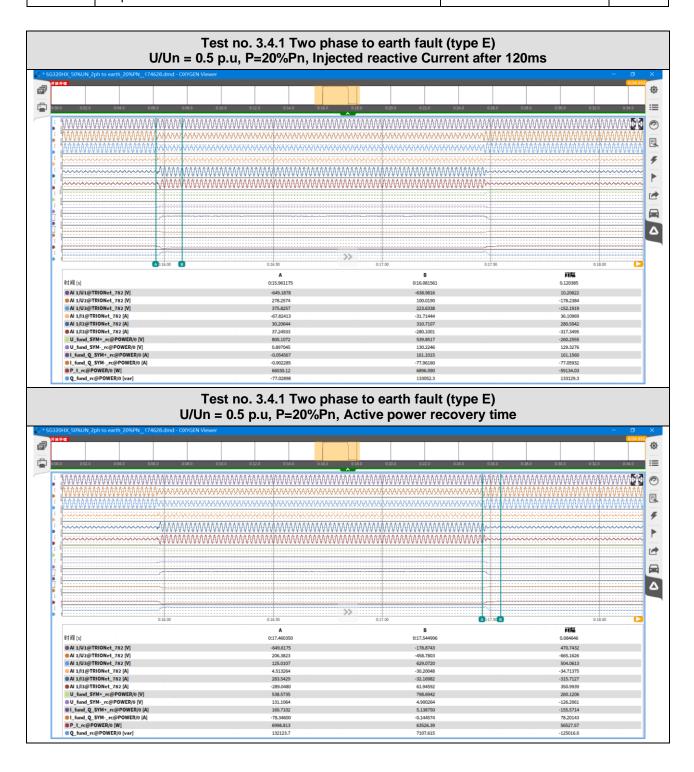
Result - Remark

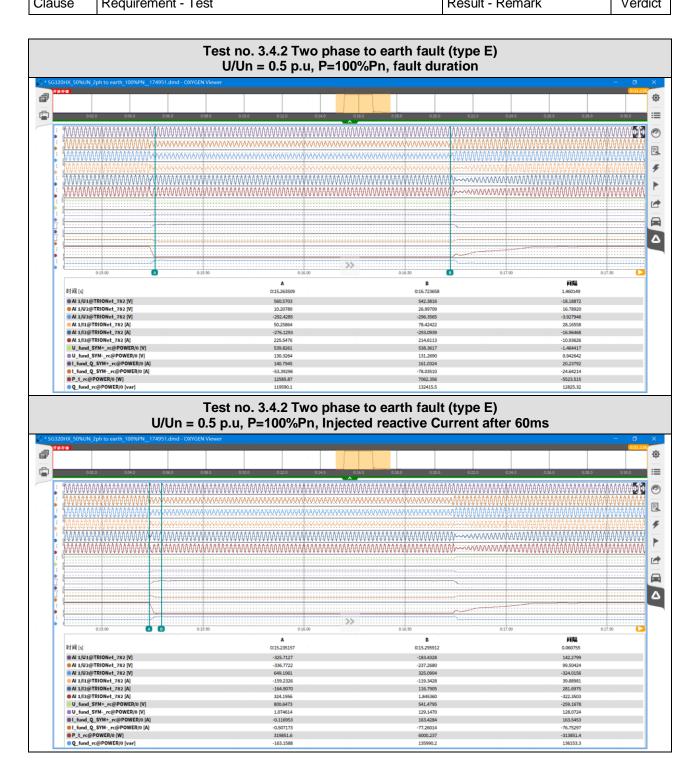

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	111	Test number				3.4.1	3.4.2
	112		Phase 1			462.0	462.6
	113	Voltage	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	461.7	462.1
-	114		Phase 3	100113		462.1	462.1
	115		Phase 1			46.3	231.0
Before	116	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.9	230.5
dip < t ₁	117		Phase 3	100113		47.2	230.2
-	118		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.00
	119	Active power	total	100ms	W	65584	319554
-	120		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.00	0.00
	121	Reactive power	total	100ms	var	-322	-198
	122		Phase 1			463.1	463.4
-	123	Voltage	Phase 2	t ₁ +100ms to t ₂ -20ms	Vrms	235.9	237.7
	124		Phase 3	-201115		235.5	237.6
-	125		Phase 1			83.3	82.8
-	126	Current	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	213.1	212.7
-	127		Phase 3			210.2	209.4
-	128	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	1445	1460
During dip t ₁ to t ₂	129	Depative newsr	Positive sequence	-	p.u.	0.42	0.42
	130	Reactive power	total		var	133052	133481
	131	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.63	0.63
-	132	A	Positive sequence	-20ms	p.u.	0.02	0.02
-	133	Active power	total		W	6896	6959
-	134	Active current	Positive sequence		p.u.	0.02	0.02
	135	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.64	0.64
	136	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.63	0.63
	137		Phase 1			462.0	462.7
-	138	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.8	462.1
-	139		Phase 3			462.0	462.2
-	140		Phase 1			48.0	230.6
-	141	Current	Phase 2	<i>t</i> ₂ +1s	Arms	48.7	229.8
After	142		Phase 3			46.8	229.9
dip > t ₂	143		Positive sequence		p.u.	0.26	1.01
	144	Active power	total	<i>t</i> ₂ +1s	W	83398	322411
	145		Positive sequence		p.u.	0.01	0.01
	146	 Reactive power 	total	t2+1s	Var	4352	4479
	147	Active power recovery time	Positive sequence		ms	84	523

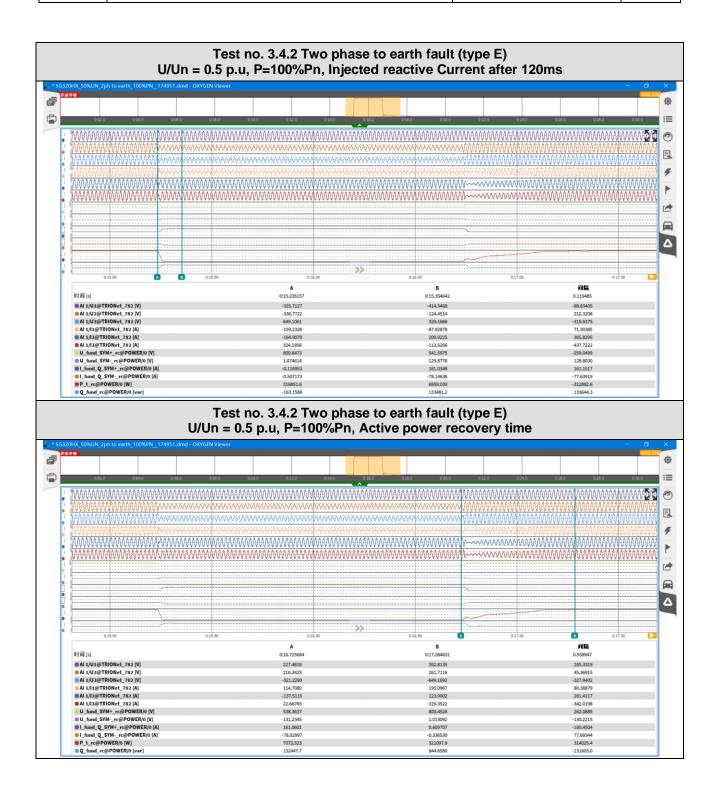
Page 2	:09 of	247
--------	--------	-----


Clause

Requirement - Test


Result - Remark


		Page 210 of 247	Report No.: 6134228.51V1	
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict


		Page 211 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	

		Page 212 of 247	Report No.: 61342	28.51V1.1
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict

		Page 213 of 247	Report No.: 61342	28.51V1.1
		G99/1-8		
Clause	Requirement - Test		Result - Remark	Verdict

Page 214 of 247

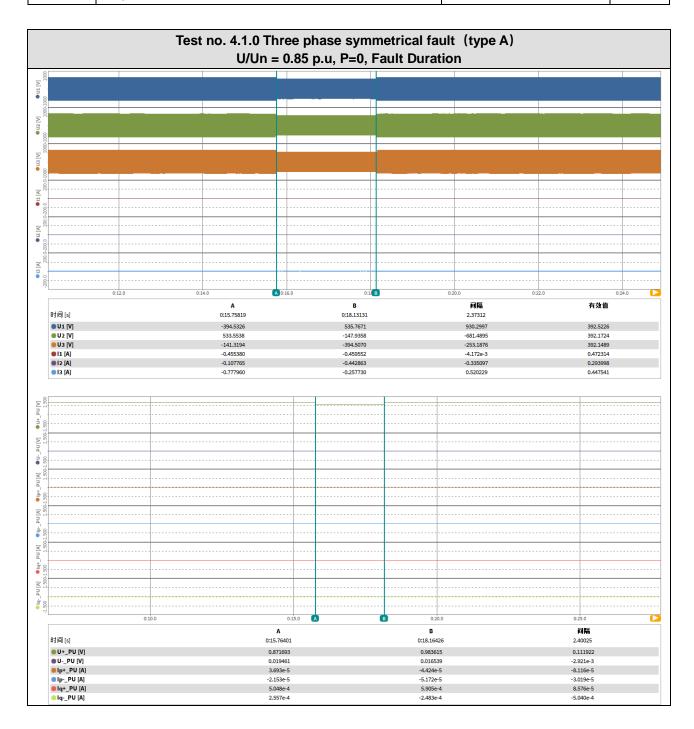
Report No.: 6134228.51V1.1

```
G99/1-8
```

Clause

Requirement - Test

Result - Remark


Item	No.	Parameter	Phase reference	Time reference	Unit	Measured value	
Before dip < t ₁	0	Test number				4.1.1	4.1.2
	1	Voltage	Phase 1	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	460.8	462.4
	2		Phase 2			460.8	462.5
	3		Phase 3			462.2	460.4
	4	Current	Phase 1	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	49.4	232.7
	5		Phase 2			49.6	232.5
	6		Phase 3			40.5	231.3
	7	Active power	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	p.u.	0.20	1.01
	8		total		W	62869	321722
	9	Reactive power	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	p.u.	0.06	0.01
	10		total		var	21840	6576
During dip t ₁ to t ₂	11	Voltage	Phase 1	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	393.3	394.3
	12		Phase 2			393.7	393.6
	13		Phase 3			393.2	393.7
	14	Current	Phase 1	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Arms	78.8	232.4
	15		Phase 2			78.4	231.7
	16		Phase 3			78.9	232.1
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	2401	2401
	18	Reactive power	Positive sequence	-	p.u.	0.22	0.27
	19		total		var	69719	85849
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.25	0.31
	21	- Active power	Positive sequence	-20ms	p.u.	0.19	0.83
	22		total		W	61470	260462
	23	Active current	Positive sequence		p.u.	0.22	0.95
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.23	0.26
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.25	0.31
After dip > t ₂	26	Voltage	Phase 1	<i>t</i> ₂ +1s	Vrms	462.6	463.7
	27		Phase 2			459.9	461.1
	28		Phase 3			461.2	460.6
	29	Current	Phase 1	<i>t</i> ₂ +1s	Arms	49.6	234.2
	30		Phase 2			49.4	232.6
	31		Phase 3			49.5	232.3
	32	Active power	Positive sequence	<i>t</i> ₂ +1s	p.u.	0.20	1.01
	33		total		W	65099	322814
	34	- Reactive power	Positive sequence	- t ₂ +1s	p.u.	0.06	0.01
	35		total		Var	21221	6991
	36	Active power recovery time	Positive sequence		ms	592	580

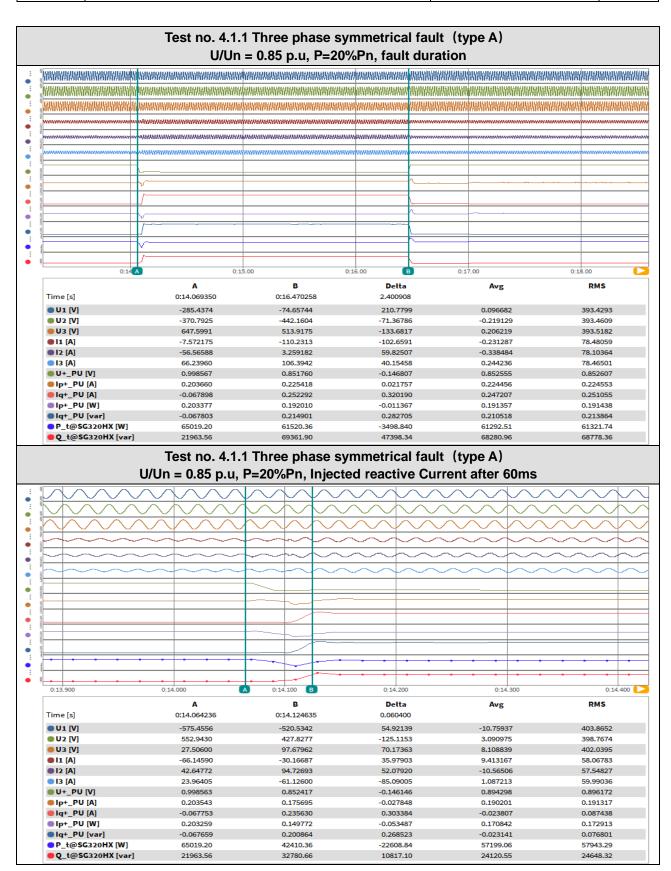
Page 215 of 247

Report No.: 6134228.51V1.1

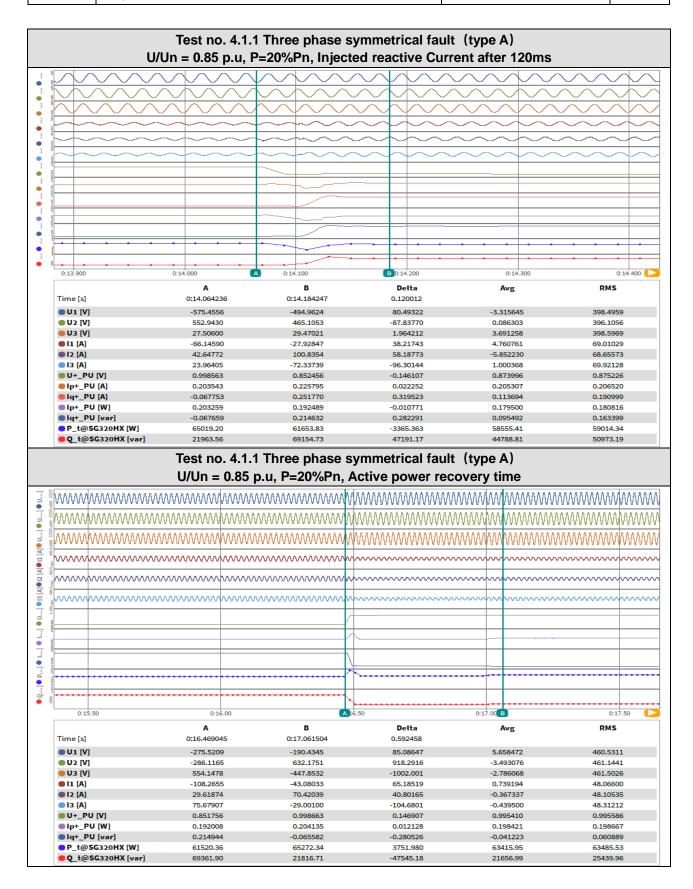
G99/1-8

Clause Requirement - Test Result - Remark Verdict

Page 216 of 247


Report No.: 6134228.51V1.1

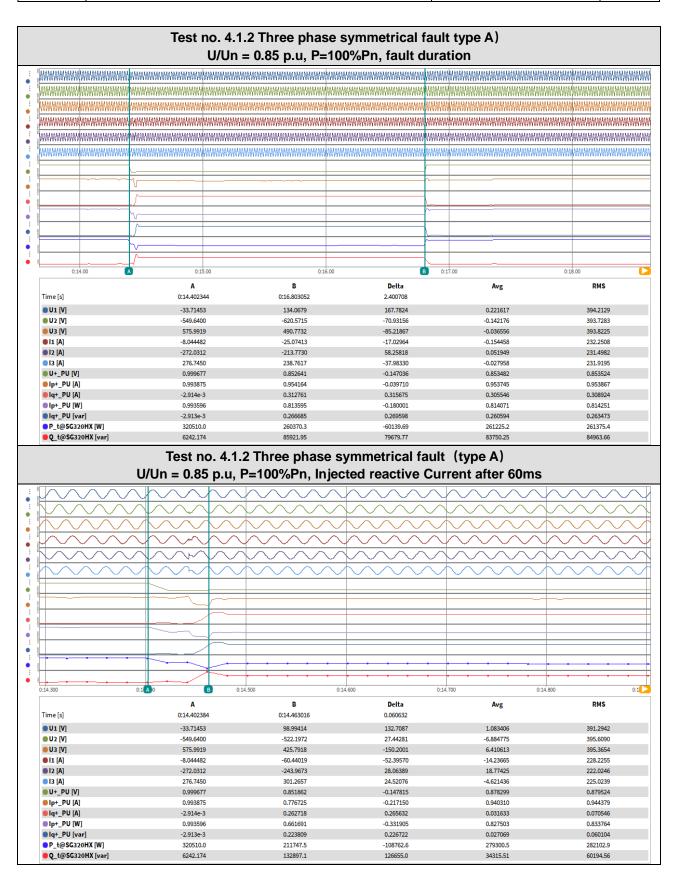
```
G99/1-8
```


Clause

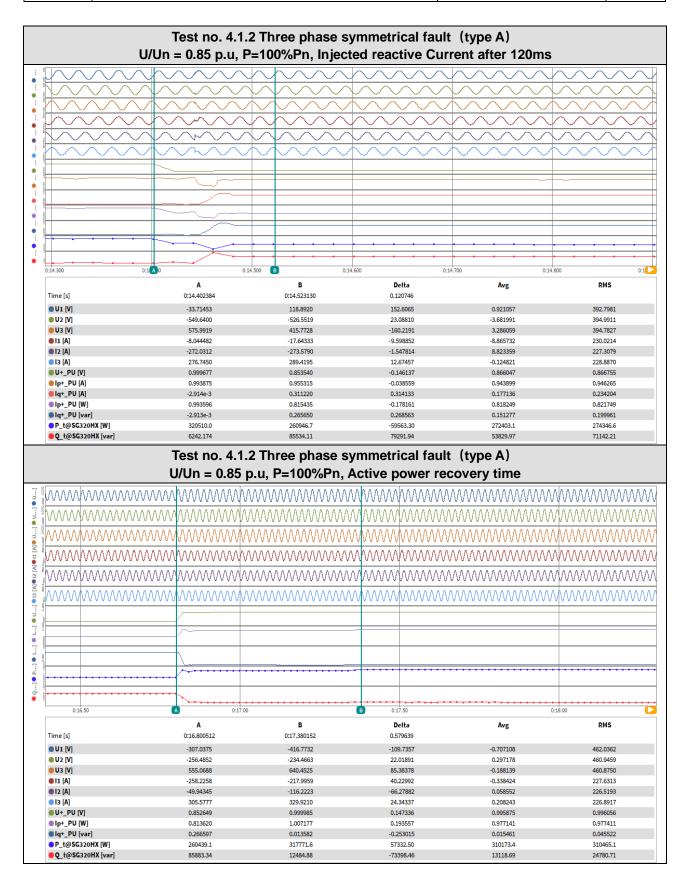
Requirement - Test

Result - Remark

		Page 217 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	


Page 218 of 247

```
G99/1-8
```


Clause

Requirement - Test

Result - Remark

		Page 219 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	

Page 220 of 247

Report No.: 6134228.51V1.1

```
G99/1-8
```

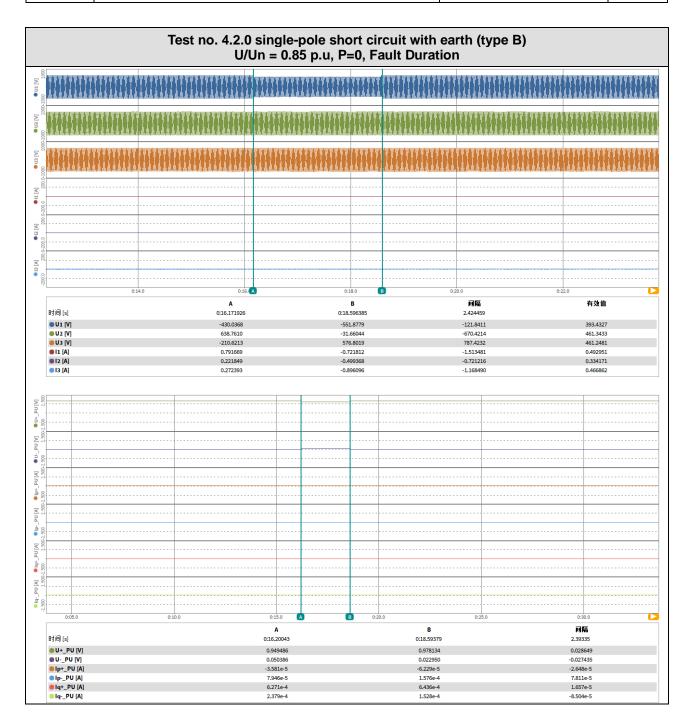
Clause

Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measur	ed value
	0	Test number				4.2.1	4.2.2
	1	Voltage	Phase 1			460.5	460.9
	2		Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Vrms	461.5	462.2
	3		Phase 3	100113		462.5	462.4
-	4		Phase 1			47.1	2324
Before dip < t ₁	5	Current	Phase 2	<i>t</i> ₁ -500ms to <i>t</i> ₁ - 100ms	Arms	47.2	232.6
$up < t_1$	6		Phase 3	100113		47.1	232.7
	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.01
	8	Active power	total	100ms	W	65219	322173
	9		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.001	0.002
	10	Reactive power	total	100ms	var	2476	6241
	11		Phase 1			392.6	393.2
-	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	461.5	461.6
	13		Phase 3	-20115		461.3	461.4
	14		Phase 1	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms		50.3	246.7
	15	Current	Phase 2		Arms	50.1	246.4
	16		Phase 3			49.5	244.9
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	2400	2401
During dip t ₁ to t ₂	18		Positive sequence	-	p.u.	0.21	0.003
	19	 Reactive power 	total		var	3295	7069
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.0001	0.003
	21	Active power	Positive sequence	-20ms	p.u.	0.21	1.01
	22		total		W	65647	323210
	23	Active current	Positive sequence		p.u.	0.22	1.06
	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	-	-
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	-	-
	26		Phase 1			461.1	463.5
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	460.8	460.9
	28		Phase 3			462.4	460.9
	29		Phase 1			47.1	233.9
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	232.0
After	31		Phase 3			47.1	232.1
dip > t_2	32		Positive sequence		p.u.	0.20	1.01
	33	Active power	total	<i>t</i> ₂ +1s	W	65220	322311
	34		Positive sequence		p.u.	0.001	0.002
	35	Reactive power	total	- t ₂ +1s	Var	2272	5501
	36	Active power recovery time	Positive sequence		ms	301	714

Report No.:	: 6134228.51V1.1
-------------	------------------

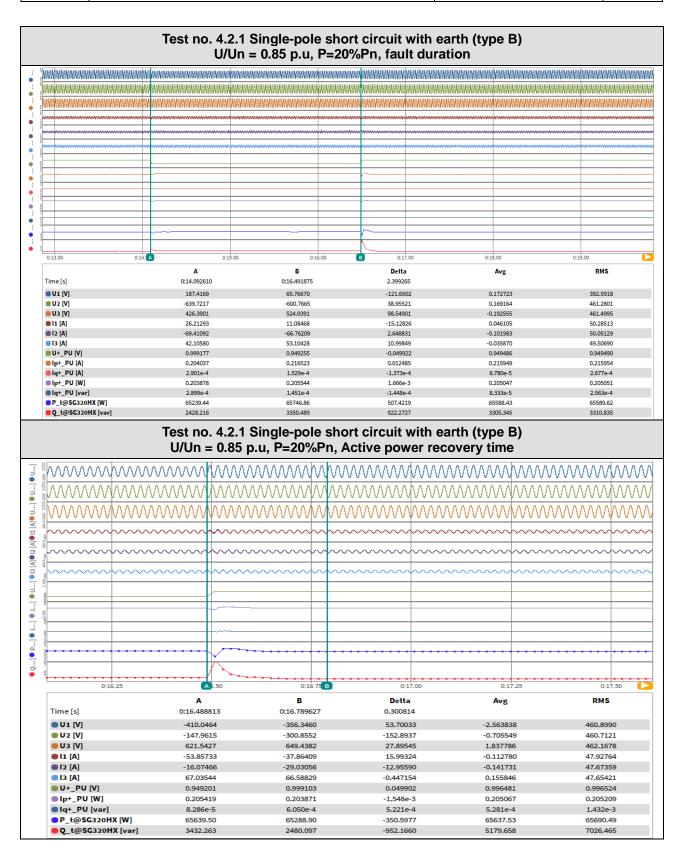

Page 221 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark


Page 222 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Page 223 of 247

Report No.: 6134228.51V1.1

G99/1-8

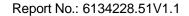
Clause Requirement - Test

Result - Remark

		Single-pole sho 0.85 p.u, P=100	%Pn, fault dura		
					NAMANANANANANANANANA
				ANA	
		ILAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKI	AUATAATAATAIJATAATAATAATAATAATAATAATAATAATAATAATAATA	IANANANANANANANANANANANANANANANA	VATALIAN VALIAN VALIAN VALIAN VALIAN VALIAN
	MANAMANA MANAMANA MANAMANA MANA	IN THE REAL PROPERTY INTERPOPERTY INTERPOP	ANANANNA MAMANANANANA ANA	MOUNTAINANANANANANANANANANANA	AND
MANAMANANANANANANANANANANANANA	anananananananananananananananan	nahanananananananananananananan	HANANANANANANANANANANANANA	anananananananananananananan	NAMANANANANANANANANANANA
NAMAMANANANANANANANANANA N	HANAANAANAANAANAANAANAANAANAANAANAANAANA	NANANANANANANANANANANANANANA	ananananananananananananananananana	ANANANANANANANANANANANANANANANA	ANANANANANANANANANANANA
					YON WARMAN AND AND AND AND AND AND AND AND AND A
			~		
			~~	· · · · ·	
		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	
	,				
	, 				
0:13.00	0:14.00	0:15.00	0:18		0:17.00
0.13.00					
Time [s]	A 0:13.630107	B 0:16.031517	Delta 2.401410	Avg	RMS
• U1 [V]	98.76156	391.6356	292.8740	0.386228	393.1238
• U2 [V]	-613.0838	-644.9317	-31.84796	-0.410365	461.7137
• U3 [V]	501.6827	259.1114	-242.5712	0.185289	461.5048
• I1 [A]	61.92816	187.4483	125.5201	0.080033	246.3927
• 12 [A]	-308.1178	-308.5537	-0.435948	-0.277872	245.1549
I3 [A] U+_PU [V]	242.1111 0.999783	120.1722 0.950703	-121.9390 -0.049080	0.111241 0.950163	244.7705 0.950168
Ip+_PU [A]	1.000990	1.061012	0.060022	1.062217	1.062251
Iq+_PU [A]	-3.499e-3	7.459e-4	4.245e-3	-2.612e-3	2.768e-3
Ip+_PU [W]	1.000815	1.008750	7.935e-3	1.009309	1.009331
Iq+_PU [var]	-3.499e-3	7.092e-4	4.208e-3	-2.482e-3	2.634e-3
	^{320120.4} 5982.434 Test no. 4.2.2	323479.2 6741.599 Single-pole sho	3358.813 759.1650	-2.482e-3 322902.5 7118.850	
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, <i>A</i>	a3358.813 759.1650 rt circuit with ea active power rec	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMM WMMMMMMMM	3358.813 759.1650 rt circuit with ea Active power rec	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMM WMMMMMMMM	3358.813 759.1650 rt circuit with ea Active power rec	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	3358.813 759.1650 rt circuit with ea Active power rec AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 Active power rec AMAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMMM MMM MMMMM MMM MMMMM MMM MMMMM MMM MMMMM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA AMANANA	-2.482e-3 322902.5 7118.850 rth (type B) overy time MMM MMMM MMM MMM MMM MMMM MMM MMM MMM MMM MMMM MMM MMMM MM	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650 At circuit with ea Active power rec ACTIVE PO	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	3358.813 759.1650 Tt circuit with ea Active power rec Active power with Active power	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 S U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWW WWWWWWW WWWWWWW WWWWWWW WWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMM MMMMMMM MMMMMMM MMMMMMM MMMMM	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWWW WWWWWWWWWWWWWWW WWWWWWWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A 	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A WWWWWWWW WWWWWWWWWWWWWWW WWWWWWWWWWW	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time ////////////////////////////////////	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A ///////////////////////////////////	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586
Iq+_PU [var] P_t@SG320HX [W] Q_t@SG320HX [var]	320120.4 5982.434 Test no. 4.2.2 5 U/Un = 0.85 p WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	323479.2 6741.599 Single-pole sho .u, P=100%Pn, A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	3358.813 759.1650	-2.482e-3 322902.5 7118.850 rth (type B) overy time	2.634e-3 322910.1 7142.586

Page 224 of 247

Report No.: 6134228.51V1.1


```
G99/1-8
```

Clause

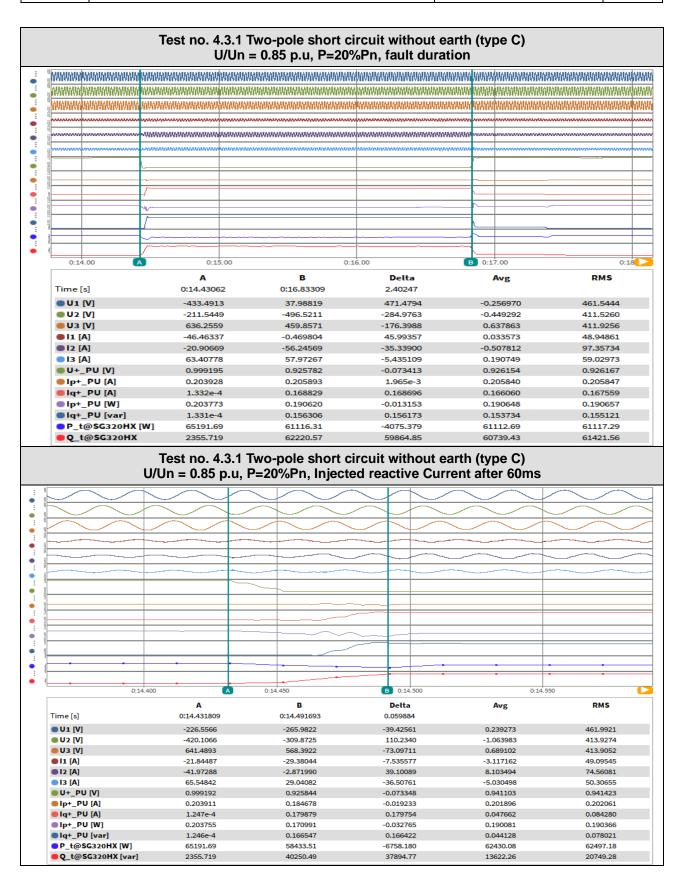
Requirement - Test

Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measur	ed value
	0	Test number				4.3.1	4.3.2
	1	Voltage	Phase 1			460.8	458.3
-	2		Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	461.1	463.9
	3		Phase 3	100113		462.5	462.9
	4		Phase 1			47.1	231.4
Before dip < t ₁	5	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	47.2	233.8
$up < t_1$	6		Phase 3	100113		47.1	233.5
-	7		Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.20	1.00
-	8	Active power	total	100ms	W	65220	322605
-	9	Duri	Positive sequence	t_1 -500ms to t_1 -	p.u.	0.003	0.01
	10	Reactive power	total	100ms	var	2288	5872
	11		Phase 1			461.6	462.0
-	12	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	411.8	411.2
	13		Phase 3	-20113		411.4	412.1
	14		Phase 1	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms		48.9	193.7
	15	Current	Phase 2		Arms	97.9	228.57
	16		Phase 3			59.3	168.6
	17	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	2402	2402
During dip t ₁ to t ₂	18	Reactive power	Positive sequence		p.u.	0.15	0.15
	19		total		var	62317	58226
	20	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.17	0.15
	21		Positive sequence	-20ms	p.u.	0.19	0.77
	22	Active power	total		W	61108	246324
	23	Active current	Positive sequence]	p.u.	0.20	0.83
-	24	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.18	0.10
	25	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.17	0.15
	26		Phase 1			460.8	462.1
	27	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.0	461.8
	28		Phase 3]		462.7	461.5
-	29		Phase 1			47,1	233.4
	30	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.1	232.7
After	31		Phase 3	1		47.2	232.6
dip > t ₂	32	A otivo norman	Positive sequence	4.14-	p.u.	0.20	1.00
	33	Active power	total	- <i>t</i> ₂ +1s	W	65207	322678
	34	Depative news	Positive sequence	4.14-	p.u.	0.003	0.01
	35	Reactive power	total	- t ₂ +1s	Var	2778	7079
	36	Active power recovery time	Positive sequence		ms	7054	578

Page 225 of 247

Page 226 of 247

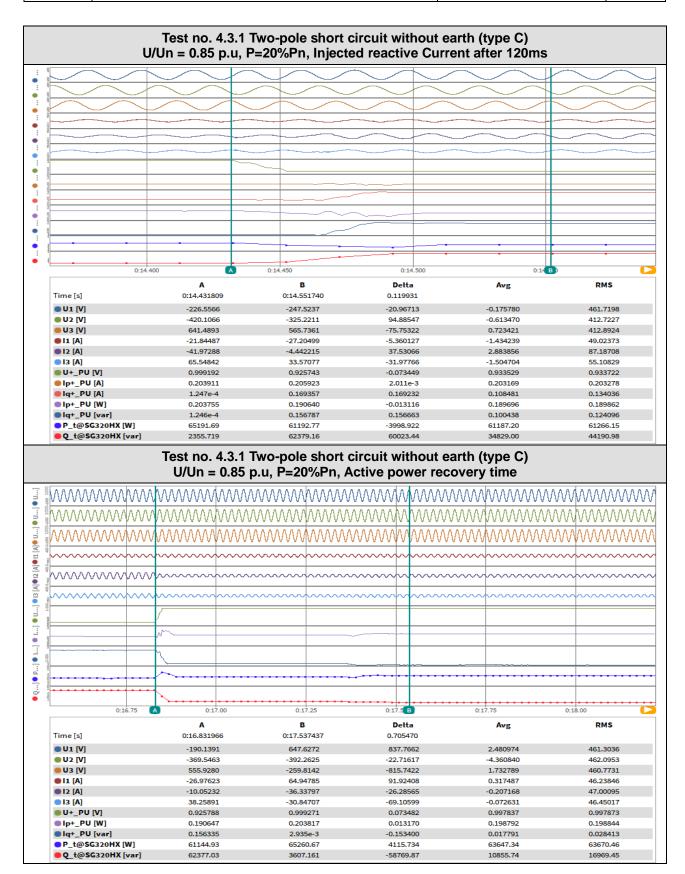

Report No.: 6134228.51V1.1

G99/1-8

Clause

Requirement - Test

Result - Remark


Page 227 of 247

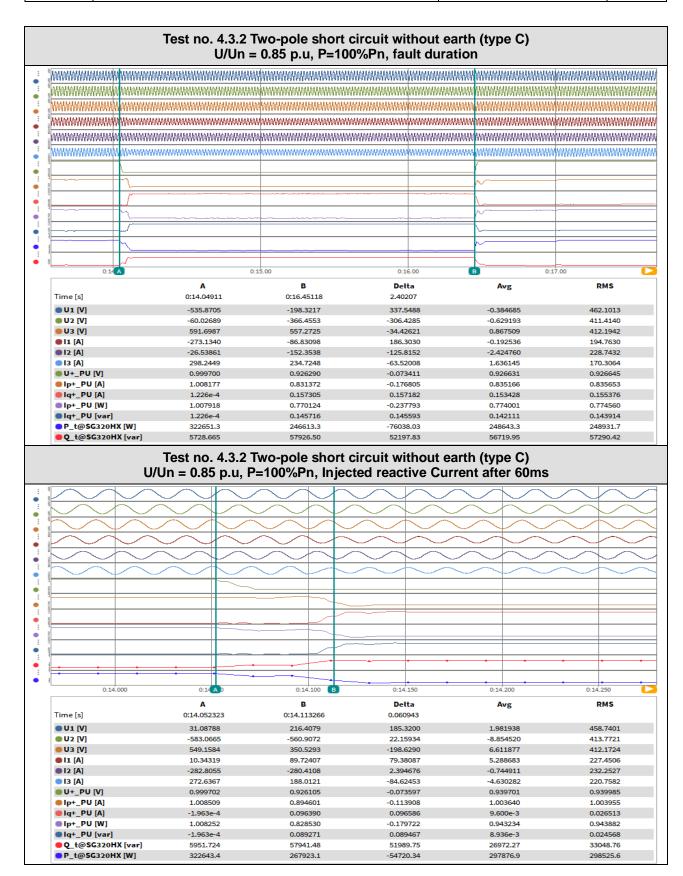
G99/1-8

Clause

Requirement - Test

Result - Remark

Page 228 of 247

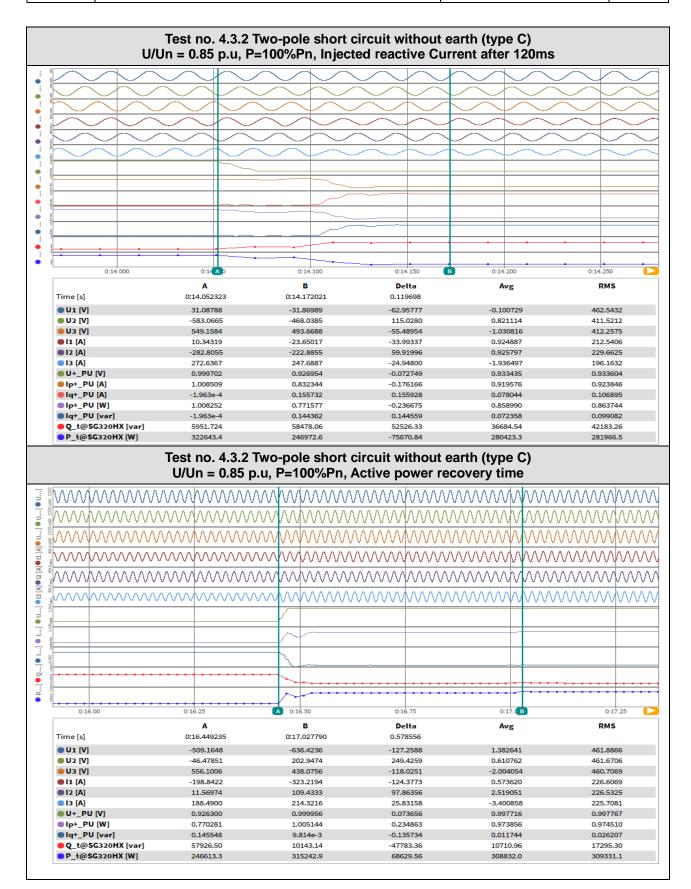

Report No.: 6134228.51V1.1

G99/1-8

Clause

Requirement - Test

Result - Remark


Page 229 of 247

G99/1-8

Clause

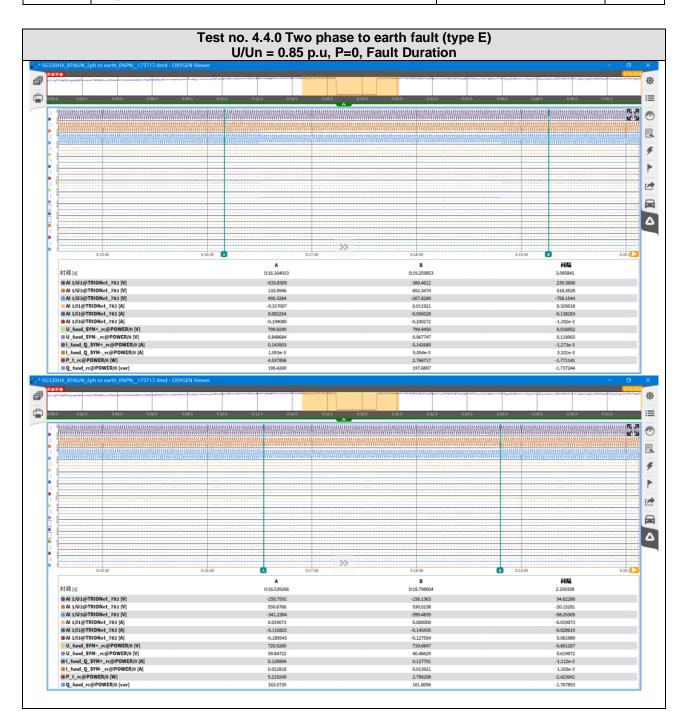
Requirement - Test

Result - Remark

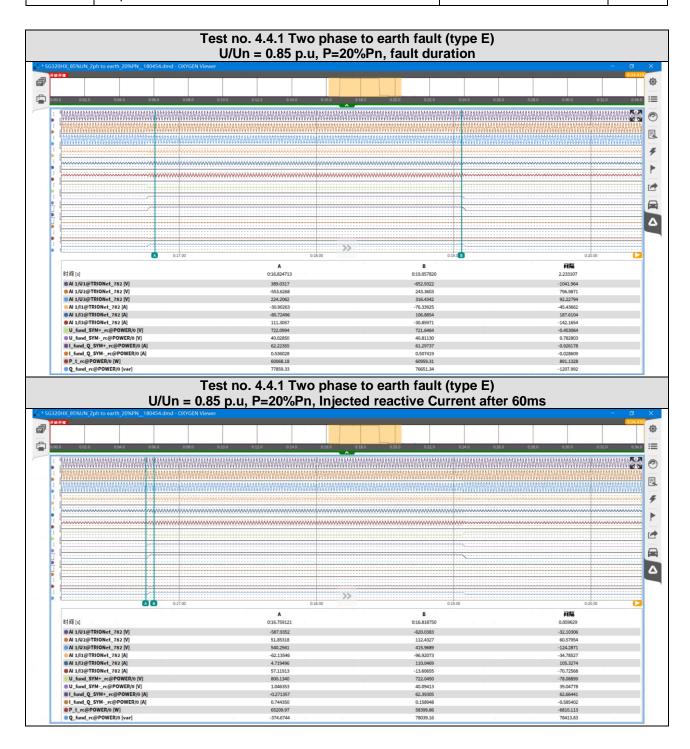
Page 230 of 247

Report No.: 6134228.51V1.1

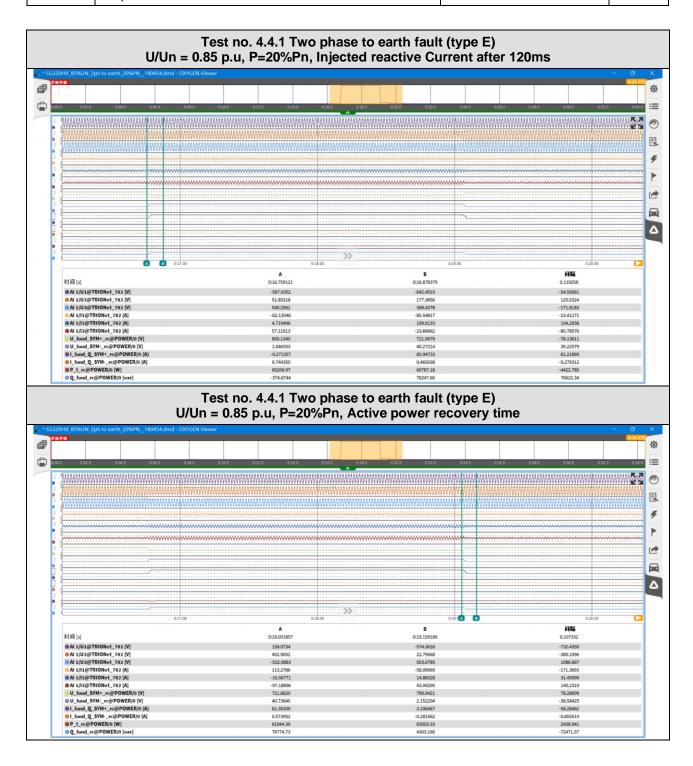
```
G99/1-8
```


Clause

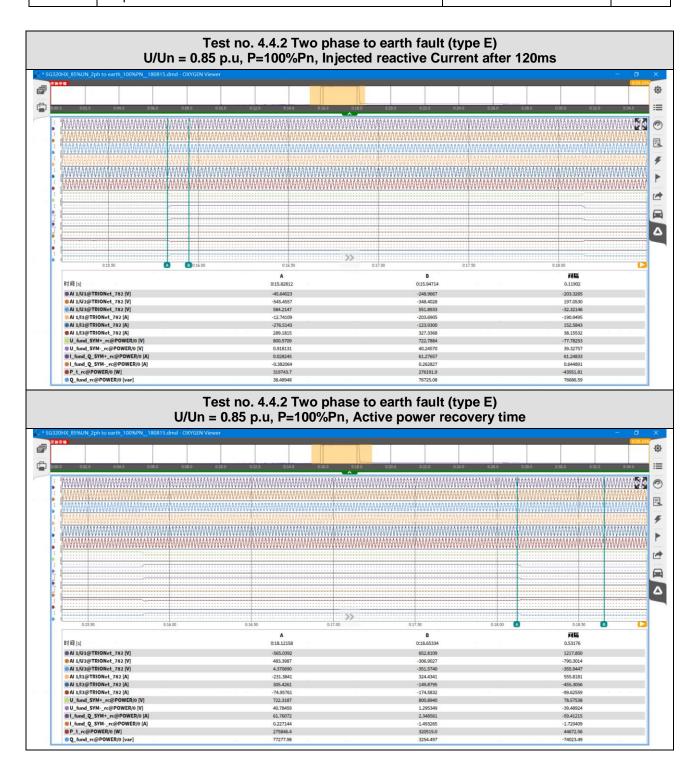
Requirement - Test


Result - Remark

Item	No.	Parameter	Phase reference	Time reference	Unit	Measure	ed value
	148	Test number				4.4.1	4.4.2
	149		Phase 1			462.0	462.6
	150	Voltage	Phase 2	t ₁ -500ms to t ₁ - 100ms	Vrms	461.8	461.9
	151		Phase 3	roomo		462.0	462.2
	152		Phase 1			47.7	231.0
Before	153	Current	Phase 2	t ₁ -500ms to t ₁ - 100ms	Arms	48.1	230.3
dip < t ₁	154		Phase 3	roomo		46.5	230.5
	155		Positive sequence	t_1 -500ms to t_1 -	p.u.	0.20	1.00
	156	Active power	total	100ms	W	65497	319577
	157	Desetive	Positive sequence	<i>t</i> ₁ -500ms to <i>t</i> ₁ -	p.u.	0.00	0.00
	158	Reactive power	total	100ms	var	-391	240
	159		Phase 1			462.8	463.8
	160	Voltage	Phase 2	<i>t</i> ₁ +100ms to <i>t</i> ₂ -20ms	Vrms	393.7	394.3
	161		Phase 3	-20113		393.9	394.6
	162		Phase 1			78.7	228.8
	163	Current	Phase 2	t ₁ +100ms to t ₂ -20ms	Arms	78.2	228.7
	164		Phase 3			78.7	229.5
	165	Total fault duration	All phase	<i>t</i> ₁ to <i>t</i> ₂	ms	2233	2247
During dip t ₁ to t ₂	166	Reactive power	Positive sequence	-	p.u.	0.24	0.24
	167		total		var	76247	76735
	168	Reactive current	Positive sequence	t_1 +100ms to t_2	p.u.	0.24	0.24
	169	- Active power	Positive sequence	-20ms	p.u.	0.19	0.86
	170		total		W	60787	276191
	171	Active current	Positive sequence	1	p.u.	0.19	0.86
	172	Reactive Current	Positive sequence	<i>t</i> ₁ +60ms	p.u.	0.24	0.24
	173	Reactive Current	Positive sequence	<i>t</i> ₁ +120ms	p.u.	0.24	0.24
	174		Phase 1			462.0	462.7
	175	Voltage	Phase 2	<i>t</i> ₂ +1s	Vrms	461.8	462.0
	176		Phase 3]		462.2	462.2
	177		Phase 1			46.9	231.2
	178	Current	Phase 2	<i>t</i> ₂ +1s	Arms	47.7	230.4
After	179		Phase 3	7		48.9	230.3
dip > t ₂	180		Positive sequence		p.u.	0.20	0.98
	181	Active power	total	<i>t</i> ₂ +1s	W	63403	312133
	182	Deasther	Positive sequence		p.u.	0.01	0.02
	183	 Reactive power 	total	- t ₂ +1s	Var	3981	5010
	184	Active power recovery time	Positive sequence		ms	107	531


		Page 231 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	


		Page 232 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	


		Page 233 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	

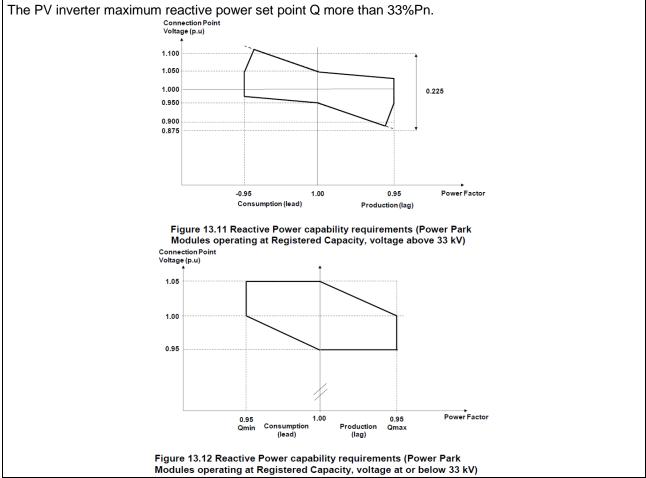
		Page 234 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	

		Page 235 of 247	Report No.: 6134228.51V1.		
		G99/1-8			
Clause	Requirement - Test		Result - Remark	Verdict	

Page 236 of 247

G99/1-8

Clause


Requirement - Test

Result - Remark

13.5.4, 13.5.5	TABLE: Reactive P C and Type D)	ower capability re	equirements – Ve	rsus Voltage (For	Type P
Model: SG350)HX				
		Inductive supply	reactive power		
Rating voltag	e Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]
<u> </u>	281.314	212.438	66%	0.80	800.26
99%	277.664	211.753	66%	0.80	792.40
98%	272.793	211.330	66%	0.79	784.13
97%	267.999	210.657	66%	0.79	776.15
96%	263.874	211.324	66%	0.78	768.19
95%	259.792	211.024	66%	0.78	760.19
94%	254.412	210.540	66%	0.77	752.22
93%	249.766	210.940	66%	0.76	744.27
92%	244.551	211.213	66%	0.76	736.29
91%	239.465	211.093	66%	0.75	728.30
90%	235.905	210.598	66%	0.75	718.98
87.5%	204.225	211.195	66%	0.70	700.02
100%	280.692	211.568	66%	0.80	800.20
100%	280.638	212.317	66%	0.80	808.21
102%	281.747	210.021	66%	0.80	816.17
102%	282.076	209.935	66%	0.80	824.15
103%	281.907	211.458	66%	0.80	832.18
104%	281.703	209.986	66%	0.80	840.09
106%	281.998	210.944	66%	0.80	848.19
107%	281.634	210.955	66%	0.80	856.20
107 %	282.231	211.190	66%	0.80	864.19
109%	281.753	211.137	66%	0.80	872.19
110%	281.227	210.209	66%	0.80	880.17
110 %	201.221				000.17
Rating voltag	e Active power	Capacitive suppl Reactive Power	Q/Pn	Power factor	Voltage
[%]	[kW]	[kVar]	[%]	[cos φ]	[V]
100%	282.358	-211.255	-66%	0.80	800.81
99%	277.771	-211.403	-66%	0.80	792.15
98%	273.051	-210.877	-66%	0.79	784.13
97%	268.055	-211.292	-66%	0.79	776.10
96%	262.811	-211.150	-66%	0.78	768.08
95%	259.325	-211.975	-66%	0.78	760.03
94%	254.963	-210.947	-66%	0.77	752.02
93%	250.544	-211.103	-66%	0.76	744.04
92%	245.816	-211.631	-66%	0.76	735.98
91%	240.851	-211.656	-66%	0.75	727.87
90%	236.093	-210.986	-66%	0.75	719.84
87.5%	205.120	-210.687	-66%	0.70	700.38

		Page 237 of 247		Report No	.: 6134228.51V1.1
		G99	9/1-8		
Clause	Requirement - Test			Result - Remark	Verdict
100%	6 281.832	-211.026	-66%	0.80	800.91
101%	6 281.632	-211.207	-66%	0.80	808.80
102%	6 282.084	-211.146	-66%	0.80	816.86
103%	6 281.790	-211.493	-66%	0.80	824.84
104%	6 281.628	-211.069	-66%	0.80	832.85
105%	6 281.346	-210.853	-66%	0.80	840.86
106%	6 281.521	-211.178	-66%	0.80	848.85
107%	6 281.625	-211.645	-66%	0.80	856.85
108%	6 282.008	-211.686	-66%	0.80	864.87
109%	6 281.702	-211.212	-66%	0.80	872.90
110%	6 281.577	-211.172	-66%	0.80	880.87

Note:

Page 238 of 247

G99/1-8

Clause

Requirement - Test

Result - Remark

Verdict

3.5.6		E: Reactive Pow ype D)	er capability require	ements – Q se	tpoint mode (For Ty	^{rpe C} P
lodel: SC	3350HX					l
			Inductive supply	reactive power	r	
Rating p [%]		Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]
10%		32.023	210.098	65.66	0.15	799.87
20%	, D	64.078	210.279	65.71	0.29	800.03
30%	, D	96.097	210.391	65.75	0.42	800.05
40%	, D	127.986	210.368	65.74	0.52	800.08
50%	, D	160.092	210.112	65.66	0.61	800.11
60%	, D	192.233	209.866	65.58	0.68	800.13
70%	, D	224.037	209.606	65.50	0.73	800.15
80%	, D	256.147	209.348	65.42	0.77	800.18
90%	, D	287.956	198.774	62.12	0.82	800.19
100%	6	319.794	142.216	44.44	0.91	800.18
			Capacitive supply	reactive powe	r	
Rating p [%]	ower	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]
10%	, D	31.855	-210.734	-65.85	0.15	799.87
20%	, D	63.868	-210.477	-65.77	0.29	799.89
30%	, D	95.881	-210.344	-65.73	0.41	799.92
40%	, D	127.993	-210.296	-65.72	0.52	799.94
50%	, D	160.179	-210.477	-65.77	0.61	799.97
60%	, D	192.205	-210.736	-65.86	0.67	799.99
70%	, D	224.152	-210.926	-65.91	0.73	800.02
80%	, D	257.094	-211.147	-65.98	0.77	800.05
90%	, D	287.737	-195.796	-61.19	0.83	800.10
100%	6	320.101	-138.076	-43.15	0.92	800.16

Page 239 of 247

Verdict

Result - Remark

G99/1-8

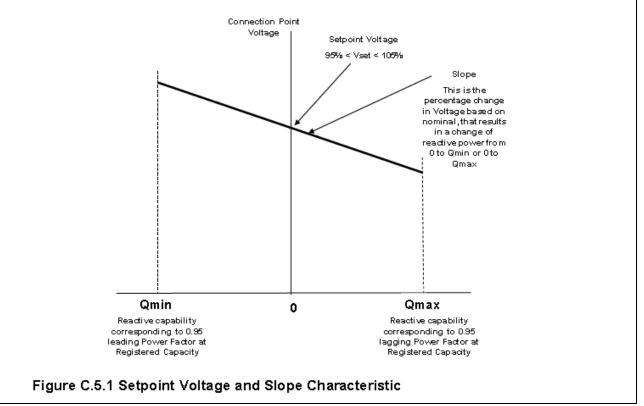

Clause	Requirement - Test

	TABLE: Voltage Control and Reactive power Stability For Type C and Type D)					F
Model: SG3	350HX					
		Ind	uctive supply read	ctive power(100	%Pn)	
Rating Volt [%]	tage	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]
100%		320.168	0.314	0.10	1.00	801.04
(i) 95%)	316.029	105.587	33.00	0.95	761.73
(iii) 93%	, 0	308.879	105.499	32.97	0.95	745.81
		Сар	acitive supply rea	ctive power(100	%Pn)	
Rating Volt [%]	tage	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]
100%		320.147	0.606	0.19	1.00	800.93
(ii) 105%	6	319.856	-104.432	-32.64	0.95	840.36
(iv)107%	6	319.712	-105.196	-32.87	0.95	856.37

Note:

For step injection into the **Power Park Module** voltage Setpoint, steps of $\pm 1\%$ and $\pm 2\%$ (or larger if required by the **DNO**) shall be applied to the voltage control system Setpoint summing junction. The injection shall be maintained for 10 s as per Figure C.9.2.

The PV inverter maximum reactive power set point Q = 33%Pn.

Page 240 of 247

G99/1-8

Clause	Requirement - Test	Result - Remark

Verdict

13.5 C.9.3	TABL	TABLE: Reactive power output capability (For Type C and Type D)					
Model: SG	350H>	κ					
Power leve [%]	əl	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Duration [mins]	
i.60%		193.876	-211.222	-66.01	0.676	30	
ii.60%		192.778	213.116	66.60	0.671	30	
iii.50%		161.064	213.738	66.79	0.602	30	
iv.50%		160.9157	-210.948	-65.90	0.606	30	
v.20%		65.309	-211.227	-66.01	0.296	60	
vi.20%		65.258	213.943	66.86	0.292	60	
vii.<20%	6	50.488	213.922	66.85	0.230	5	
viii.0%		-2.531	214.657	67.08	0.012	5	
ix.0%		-2.743	-210.179	-65.68	0.013	5	

Note:

(i) Operation in excess of 60% **Registered capacity** and maximum continuous lagging **Reactive Power** for 30 minutes.

(ii) Operation in excess of 60% **Registered capacity** and maximum continuous leading **Reactive Power** for 30 minutes.

(iii) Operation at 50% **Registered capacity** and maximum continuous leading **Reactive Power** for 30 minutes.

(iv)Operation at 50% **Registered capacity** and maximum continuous lagging **Reactive Power** for 30 minutes.

(v) Operation at 20% **Registered capacity** and maximum continuous leading **Reactive Power** for 60 minutes.

(vi) Operation at 20% **Registered capacity** and maximum continuous lagging **Reactive Power** for 60 minutes.

(vii) Operation at less than 20% **Registered capacity** and unity **Power Factor** for 5 minutes. This test only applies to systems which do not offer voltage control below 20% of **Registered capacity**.

(viii) Operation at the lower of the **Minimum Generation** or 0% **Registered capacity** and maximum continuous leading **Reactive Power** for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.

(ix) Operation at the lower of the **Minimum Generation** or 0% **Registered capacity** and maximum continuous lagging **Reactive Power** for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.

Page 241 of 247

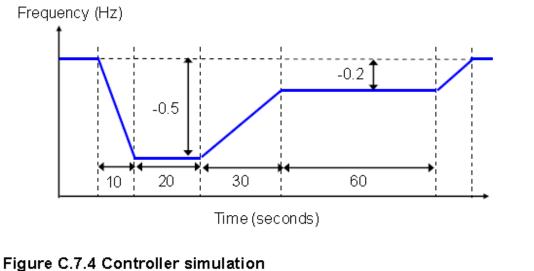
G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict

C.7.8.2	TABLE: Voltage and Frequency Controller Model Verification and Validation (For Type C and Type D)	Р			
Model: SG350HX					

Test (80%Pn)						
Frequency [Hz]	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Time [s]	
50.0	256.381	0.290	0.09	1.000	10	
50.0->49.5	256.474	0.141	0.04	1.000	10	
49.5	256.384	0.207	0.06	1.000	20	
49.5->49.8	256.330	0.201	0.06	1.000	30	
49.8	256.368	0.388	0.12	1.000	60	
49.8->50.0	256.340	0.205	0.06	1.000	10	

Note:


Power Park Module operating at 80% of Registered Capacity.

(i) a ramped reduction in the measured system frequency of 0.5Hz in 10 s followed by

(ii) 20 s of steady state with the measured system frequency depressed by 0.5Hz followed by

(iii) a ramped increase in measured system frequency of 0.3Hz over 30 s followed by

(iv) 60 s of steady state with the measured system frequency depressed by 0.2Hz as illustrated in Figure C.7.4 below.

Page 242 of 247

Ρ

G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict

C.7.8.4 TABLE: Voltage and Frequency Controller Model Verification and Validation (For Type C and Type D) P Model: SG350HX P

Test (100%Pn)						
Rated Voltage [%]	Active power [kW]	Reactive Power [kVar]	Q/Pn [%]	Power factor [cos φ]	Voltage [V]	
100	321.281	1.324	0.41%	1.000	800.53	
102	321.504	0.713	0.22%	1.000	816.51	
104	321.875	1.160	0.36%	1.000	832.61	
106	322.630	1.271	0.40%	1.000	848.57	
108	321.338	1.029	0.32%	1.000	864.58	
110	321.416	1.479	0.46%	1.000	880.69	

Note:

the **Power Park Module** operating at **Registered Capacity** and unity **Power Factor** at the **Connection Point** to a 2% step increase in the voltage reference. The simulation study shall show the terminal voltage, **Active Power**, **Reactive Power** and **Power System Stabiliser** output signal as appropriate.

10. Protection – Re-connection timer

Model: SG350HX

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Power Generating Module** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.			
240 s	241.3 s	At 1.16 pu (928V)	At 0.78 pu (624V)	At 47.4 Hz	At 52.1 Hz
Confirmation that the Power Generating Module does not re-connect.		No Reconnection	No Reconnection	No Reconnection	No Reconnection

Page	243	of	247
------	-----	----	-----

G99/1-8

Clause	Requirement - Test	Result - Remark	Verdict	
Clause	Requirement - rest	Result - Remark	verdict	

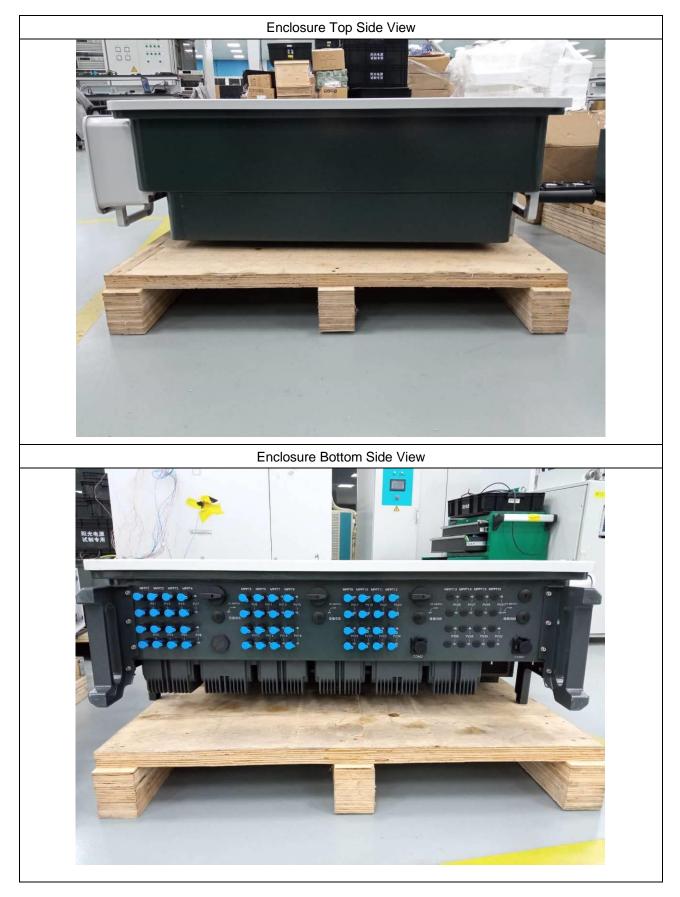
Fault level contribution:			Р
These tests shall be carried entry, even if the contribution		G99 Annex A.7.1.5. Please complete ea	ich
Model: SG350HX			
For Inverter output			
Time after fault	Volts	Amps	
20ms	153.8 V	20.8 A	
100ms	53.7 V	0.9 A	
250ms	32.1 V	0.5 A	
500ms	19.5 V	0.1 A	
Time to trip	0.05	In seconds	

12.7/13.9 Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7.				
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	N/A			
15.2 Wiring functional tests: If required by para 15.2.1.				
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	N/A			
11.1.3.1/12.1.3.1/ 13.1.3.1Logic interface (input port).				
Confirm that an input port is provided and can be used to shut down the module.	Р			
9.1.7 Cyber security				
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	Р			
Additional comments.				
The inverter communication terminal COM2 is located at the bottom of the inverter, as shown in t	the figure			

The inverter communication terminal COM2 is located at the bottom of the inverter, as shown in the figure below. To short or open pin3 and pin4 of logic interface port (COM2 port) to control the inverter to normal or shutdown active power of output. A logic interface is provided that can be operated by an external switch or contactor. Users can install by themselves. Users install the switch connected to pin4 and pin6 of COM2 port and just need control the switch signal causing the switch to open or short. When the switch is closed, the inverter will operate normally. When the switch is opened, the inverter will cease to export active power within 5 seconds.

Page 244 of 247

			G9	9/1-8	
Clause	Requireme	nt - Test		Result - Remark	Verdict
	table 5.7 C	ommunication t	1 3 5 7	2 4 6 8 5319-E016	
	table 5-7 Communication terminal COM2 definition Port PIN Definition Description				
	Port	PIN 1	Definition	Decemption	
	/	2	/		
	,	3	DI		
	DI	4	PGND	 emergency stop dry contact 	
		5	COM		
	D0	6	NC	fault output dry contact	
		7	NO		
		8	,		


Page 245 of 247

Appendix 2: Photo documentation

TRF No. G99/1-8_V1.0

--- End of test report---